Skip to main content

Photo-Fenton Treatment of a Pharmaceutical Industrial Effluent Under Safe pH Conditions

  • Chapter
  • First Online:
Non-Steroidal Anti-Inflammatory Drugs in Water

Abstract

This chapter aims to present the effect of treating a pharmaceutical industrial effluent by photo-Fenton catalyzed with a Fe-pillared bentonite. XRD proved the pillaring process successful, and by N2 physisorption, it was established that the specific surface area of bentonite (34 m2/g) increased to 277 m2/g and pore volume increased from 0.058 to 0.106 cm3/g. Active Fe species were identified by Mössbauer spectroscopy. The effect of reaction variables such as catalyst loading, pH, H2O2 concentration, and initial concentration of total organic carbon (TOC) is also presented. It was concluded that to reach near 100% mineralization, an acidic pH (2.7) should be observed. A high mineralization under these conditions, however, does not directly correlate with a low toxicity. Actually, the oxidative stress biomarkers only decreased when pH was not modified (pH = 8) albeit the attained mineralization was only 51%. It is worth noticing that the use of pillared clays allows carrying out photo-Fenton treatment under pH conditions other than acidic. The synthesized catalyst exhibited magnetism and this can be used for an easier recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. SanJuan-Reyes N, Gómez-Oliván LM, Galar-Martínez M et al (2013) Effluent from an NSAID-manufacturing plant in Mexico induces oxidative stress on Cyprinus carpio. Water Air Soil Poll 224(9):1689

    Google Scholar 

  2. Klamerth N, Malato S, Maldonado MI et al (2011) Modified photo-Fenton for degradation of emerging contaminants in municipal wastewater effluents. Catal Today 161:241–246

    CAS  Google Scholar 

  3. Nunes B, Antunes SC, Santos J, Martins L, Castro BB (2014) Toxic potential of paracetamol to freshwater organisms: a headache to environmental regulators. Ecotoxicol Environ Saf 107:178–185

    CAS  Google Scholar 

  4. Perez-Moya M, Graells M, Castells G et al (2010) Characterization of the degradation performance of the sulfamethazine antibiotic by photo-Fenton process. Water Res 44:2533–2540

    CAS  Google Scholar 

  5. Poyatos JM, Muñio MM, Almecija MC et al (2009) Advanced oxidation processes for wastewater treatment: state of the art. Water Air Soil Poll 205:187–204

    Google Scholar 

  6. Rozas O, Contreras D, Mondaca MA et al (2010) Experimental design of Fenton and photo-Fenton reactions for the treatment of ampicillin solutions. J Hazard Mater 177:1025–1030

    CAS  Google Scholar 

  7. Carra I, García Sánchez JL, Casas López JL et al (2014) Phenomenological study and application of the combined influence of iron concentration and irradiance on the Photo-Fenton process to remove micropollutants. Sci Total Environ 478:123–132

    CAS  Google Scholar 

  8. Cabrera Reina A, Miralles-Cuevas S, Casas López JL et al (2017) Pyrimethanil degradation by photo-Fenton process: influence of iron and irradiance level on treatment cost. Sci Total Environ 605–606:230–237

    Google Scholar 

  9. Catalá M, Domínguez-Morueco N, Migens A et al (2015) Elimination of drugs of abuse and their toxicity from natural waters by photo-Fenton treatment. Sci Total Environ 520:198–205

    Google Scholar 

  10. Foteinis S, Monteagudo JM, Durán A et al (2018) Environmental sustainability of the solar photo-Fenton process for wastewater treatment and pharmaceuticals mineralization at semi-industrial scale. Sci Total Environ 612:605–612

    CAS  Google Scholar 

  11. Martin del Campo E, Romero R, Roa G et al (2014) Photo-Fenton oxidation of phenolic compounds catalyzed by iron-PILC. Fuel 138:149–155

    CAS  Google Scholar 

  12. Xu T, Liu Y, Ge F et al (2013) Application of response surface methodology for optimization of azocarmine B removal by heterogeneous photo-Fenton process using hydroxy-iron–aluminum pillared bentonite. Appl Surf Sci 280:926–932

    CAS  Google Scholar 

  13. Valverde JL, Amaya R, Romero R et al (2005) Preparation and characterization of Fe-PILCS. Influence of the synthesis parameters. Clays Clay Miner 53(6):613–621

    CAS  Google Scholar 

  14. Kooli F (2013) Pillared montmorillontes from unusual antiperspirant aqueous solutions: Characterization and catalytic tests. Micropor Mesopor Mat 167:228–236

    CAS  Google Scholar 

  15. Iurascu B, Siminiceanu I, Vione D et al (2009) Phenol degradation in water through a heterogeneous photo-Fenton process catalyzed by Fe-treated laponite. Water Res 43:1313–1322

    CAS  Google Scholar 

  16. Benetoli L, De Souza C, Da Silva K, De Souza I, De Santana H, Paesano A, Da Costa A, Zaia C, Zaia D (2007) Amino acid interaction with and adsorption on clays: FT-IR and Mössbauer spectroscopy and X-ray diffractometry investigations. Orig Life Evol Biosph 37:479–493

    CAS  Google Scholar 

  17. Ericsson T, Wäppling R, Punakivi K (1977) Mössbauer spectroscopy applied to clay and related minerals. Geologiska Föreningen i Stockholm Förhandlingar 99(3):229–244

    CAS  Google Scholar 

  18. Komlósi A, Kuzmann E, Homonnay Z, Nagy N, Kubuki S, Kónya J (2005) Effect of FeCl3 and acetone on the structure of Na–montmorillonite studied by Mössbauer and XRD measurements. Hyperfine Interact 166:643

    Google Scholar 

  19. Kuzmann E, Singh LH, Garg VK, de Oliveira AC, Kovács EM, Molnár AM, Homonnay Z, Kónya P, Nagy NM, Kónya J (2016) Mössbauer study of the effect of rare earth substitution into montmorillonite. Hyperfine Interact 237:2

    Google Scholar 

  20. Occelli ML, Stencel JM, Suib SL (1991) Spectroscopic characterization of some iron-containing pillared clays. J Mol Catal 64(2):221–236

    CAS  Google Scholar 

  21. Schaefer MV, Gorski CA, Scherer MM (2011) Spectroscopic evidence for interfacial Fe(II)−Fe(III) electron transfer in a clay mineral. Environ Sci Technol 45(2):540–545

    CAS  Google Scholar 

  22. Gibb TC, Greenwood NN (1971) Mössbauer spectroscopy. Chapman and Hall Ltd, London

    Google Scholar 

  23. Kuzmann E, Nagy S, Vértes A (2003) Critical review of analytical applications of Mössbauer spectroscopy illustrated by mineralogical and geological examples (IUPAC Technical Report). Pure Appl Chem 75:801–858

    CAS  Google Scholar 

  24. Parida KM, Mishra T, Das D et al (1999) Thermal transformation of trinuclear Fe(III) acetato complex intercalated montmorillonite. Appl Clay Sci 15(5–6):463–475

    CAS  Google Scholar 

  25. Bustamante Mamani J, Fernel Gamarra L, Espósito de Souza Brito G (2014) Synthesis and characterization of Fe3O4 nanoparticles with perspectives in biomedical applications. Mat Res 17(3):542–549

    Google Scholar 

  26. Herojitsingh L, Govindaraja R, Amarendra G et al (2013) Local structure and magnetic properties of cubic iron oxide nanoparticles formed in zeolite as deduced using Mössbauer spectroscopy. Appl Phys Lett 103:193104

    Google Scholar 

  27. Johnson CE, Johnson JA, Hah HY et al (2016) Mössbauer studies of stoichiometry of Fe3O4: characterization of nanoparticles for biomedical applications. Hyperfine Interact 237:27

    Google Scholar 

  28. Ahn T, Kim JH, Yang H-M et al (2012) Formation pathways of magnetite nanoparticles by coprecipitation method. J Phys Chem C 116(10):6069–6076

    CAS  Google Scholar 

  29. Guyodo Y, Bonville P, Till JL et al (2016) Constraining the origins of the magnetism of lepidocrocite (γ-FeOOH): a Mössbauer and magnetization study. Front Earth Sci 4:28

    Google Scholar 

  30. Lozano I, Casillas N, Ponce de León C et al (2017) New insights into the electrochemical formation of magnetite nanoparticles. J Electrochem Soc 164(4):D184–D191

    CAS  Google Scholar 

  31. Hurtado L, Romero R, Mendoza A, Brewer S, Donkor K, Gómez-Espinosa RM, Natividad R (2019) Paracetamol mineralization by Photo Fenton process catalyzed by a Cu/Fe-PILC under circumneutral pH conditions. J Photochem Photobiol A Chem. 373:162–170

    CAS  Google Scholar 

  32. Undabeytia T, Galán-Jiménez MC, Gómez-Pantoja E et al (2013) Fe-pillared clay mineral-based formulations of imazaquin for reduced leaching in soil. Appl Clay Sci 80-81:382–389

    CAS  Google Scholar 

  33. SanJuan-Reyes N, Gomez-Olivan LM, Galar-Martinez M et al (2015) NSAID-manufacturing plant effluent induces geno- and cytotoxicity in common carp (Cyprinus carpio). Sci Total Environ 530-531C:1–10

    Google Scholar 

  34. Chen Q, Wu P, Dang Z et al (2010) Iron pillared vermiculite as a heterogeneous photo-Fenton catalyst for photocatalytic degradation of azo dye reactive brilliant orange X-GN. Sep Purif Technol 71:315–323

    CAS  Google Scholar 

  35. Michael I, Hapeshi E, Michael C et al (2012) Solar photo-Fenton process on the abatement of antibiotics at a pilot scale: degradation kinetics, ecotoxicity and phytotoxicity assessment and removal of antibiotic resistant enterococci. Water Res 46:5621–5634

    CAS  Google Scholar 

  36. Melero JA, Martinez F, Botas JA et al (2009) Heterogeneous catalytic wet peroxide oxidation systems for the treatment of an industrial pharmaceutical wastewater. Water Res 43:4010–4018

    CAS  Google Scholar 

  37. Sun J, Feng J, Shi S et al (2012) Degradation of the antibiotic sulfamonomethoxine sodium in aqueous solution by photo-Fenton oxidation. Chin Sci Bull 57:558–564

    CAS  Google Scholar 

  38. Ji F, Li C, Zhang J et al (2011) Heterogeneous photo-Fenton decolorization of methylene blue over LiFe(WO4)2 catalyst. J Hazard Mater 186:1979–1984

    CAS  Google Scholar 

  39. Pariente M, Martinez F, Melero J et al (2008) Heterogeneous photo-Fenton oxidation of benzoic acid in water: effect of operating conditions, reaction by-products and coupling with biological treatment. Appl Catal B-Environ 85:24–32

    CAS  Google Scholar 

  40. Ayodele OB, Lim JK, Hameed BH (2012) Pillared montmorillonite supported ferric oxalate as heterogeneous photo-Fenton catalyst for degradation of amoxicillin. Appl Catal A-Gen 413-414:301–309

    CAS  Google Scholar 

  41. Herney-Ramirez J, Vicente MA, Madeira LM (2010) Heterogeneous photo-Fenton oxidation with pillared clay-based catalysts for wastewater treatment: a review. Appl Catal B-Environ 98:10–26

    CAS  Google Scholar 

  42. De León MA, Castiglioni J, Bussi J et al (2008) Catalytic activity of an iron-pillared montmorillonitic clay mineral in heterogeneous photo-Fenton process. Catal Today 133–135:600–605

    Google Scholar 

  43. Najjar W, Azabou S, Sayadi S et al (2007) Catalytic wet peroxide photo-oxidation of phenolic olive oil mill wastewater contaminants. Appl Catal B-Environ 74:11–18

    CAS  Google Scholar 

  44. Sadok Letaïef BC, Aranda P, Martín-Luego MA et al (2003) Fe-containing pillared clays as catalysts for phenol hydroxylation. Appl Clay Sci 22:263–277

    Google Scholar 

  45. Bobu M, Yediler A, Siminiceanu I et al (2008) Degradation studies of ciprofloxacin on a pillared iron catalyst. Appl Catal B-Environ 83:15–23

    CAS  Google Scholar 

  46. González-Bahamón LF, Mazille F, Benítez LN et al (2011) Photo-Fenton degradation of resorcinol mediated by catalysts based on iron species supported on polymers. J Photoch Photobio A 217:201–206

    Google Scholar 

  47. Agency, U.-U. S. E. P (2000) Methods for measuring the toxicity and bioaccumulation of sediment-associated contaminants with freshwater invertebrates. Page 192 Report EPA 600/R-99/064. Prepared by the Office of Research and Development, Mid-Continent Ecology Division, USEPA, Duluth, Minnesota, and the Office of Science and Technology, Office of Water, USEPA, Washington, DC

    Google Scholar 

  48. Pennak RV (1978) Freshwater invertebrates of the United Sates. 2nd edn. Wiley, New York

    Google Scholar 

  49. (OECD), O. f. t. E. C. a. D (1984) Guidelines for the testing of chemicals. Guideline 207: earthworm acute toxicity test OECD publications service, Paris, p 9

    Google Scholar 

  50. (SETAC), S. o. E. T. a. C.-E (1993) Guidance document on sediment toxicity test and bioassays for freshwater and marine environments. Workshop on Sediment Toxicity Assessment. SETAC, Amsterdam

    Google Scholar 

  51. Büege JA, Aust SD (1978) Microsomal lipid peroxidation. Method Enzymol 52:302–310

    Google Scholar 

  52. Levine RL, Williams JA, Stadtman ER et al (1994) Carbonyl assays for determination of oxidatively modified proteins. Method Enzymol 233:346–357

    CAS  Google Scholar 

  53. Jiang ZY, Hunt JV, Wolff SP (1992) Ferrous ion oxidation in the presence of xylenol orange for detection of lipid hydroperoxide in low density lipoprotein. Anal Biochem 202:384–389

    CAS  Google Scholar 

  54. Misra HP, Fridovich I (1972) The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 247:3170–3175

    CAS  Google Scholar 

  55. Radi R, Turrens JF, Chang LY et al (1991) Detection of catalase in rat heart mitochondria. J Biol Chem 266:22028–22034

    CAS  Google Scholar 

  56. Bradford M (1976) A rapid and sensitive method for the quantitation of microorganism quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72:248–254

    CAS  Google Scholar 

  57. Novoa-Luna KA, Romero-Romero R, Natividad-Rangel R et al (2016) Oxidative stress induced in Hyalella azteca by an effluent from a NSAID-manufacturing plant in Mexico. Ecotoxicology 25(7):1288–1304

    CAS  Google Scholar 

  58. Araujo L, Villa N, Camargo N et al (2011) Persistence of gemfibrozil, naproxen and mefenamic acid in natural waters. Environ Chem Lett 9:13–18

    CAS  Google Scholar 

  59. Borgmann U, Bennie DT, Ball AL et al (2007) Effect of a mixture of seven pharmaceuticals on Hyalella azteca over multiple generations. Chemosphere 66:1278–1283

    CAS  Google Scholar 

  60. Gómez-Oliván LM, Neri-Cruz N, Galar-Martínez M et al (2012) Assessing the oxidative stress induced by paracetamol spiked in artificial sediment on Hyalella azteca. Water Air Soil Pollut 223:5097–5104

    Google Scholar 

Download references

Acknowledgments

A. Mendoza thanks CONACYT for grant 290817 to conduct postgraduate studies. R. Romero is grateful to CONACYT for their financial support through grant 266149. CONACYT is also acknowledged for grant 269093. Dr. Uvaldo Hernández, M. Osmín Avilés Garcia, and M.C.Q. Eduardo Martín del Campo are acknowledged for their support on Fe-PILC characterization. Citlalit Martinez Soto is also acknowledged for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rubi Romero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Natividad, R. et al. (2020). Photo-Fenton Treatment of a Pharmaceutical Industrial Effluent Under Safe pH Conditions. In: Gómez-Oliván, L.M. (eds) Non-Steroidal Anti-Inflammatory Drugs in Water. The Handbook of Environmental Chemistry, vol 96. Springer, Cham. https://doi.org/10.1007/698_2020_551

Download citation

Publish with us

Policies and ethics