Skip to main content

B Cells and Antibodies in MS

  • Chapter
  • First Online:
Molecular Basis of Multiple Sclerosis

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 51))

Abstract

Increasing research activities on humoral immune responses involved in the immunopathogenesis of multiple sclerosis (MS) led to a revival of the importance of B cells and antibodies in MS. B cells seem now to play various immunopathogenetic roles in the initiation and propagation of inflammatory demyelinating processes at different disease stages of MS. The biological activities of antibodies in MS is, in general, still less known, although it emerges that antibodies are specifically involved in demyelination or, at least, mirror tissue destruction in the central nervous system. Finally, there is growing evidence that treatments, which specifically target B cells and/or antibodies, are effective in MS and its variants neuromyelitis optica (NMO). This chapter therefore aims to summarize the present knowledge and to outline future directions about the role of B cells and antibodies in research and therapy of MS and NMO.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen CD et al (2004) Germinal center dark and light zone organization is mediated by CXCR4 and CXCR5. Nat Immunol 5:943–952

    Article  PubMed  CAS  Google Scholar 

  • Ansel KM et al (2000) A chemokine-driven positive feedback loop organizes lymphoid follicles. Nature 406:309–314

    Article  PubMed  CAS  Google Scholar 

  • Arce S et al (2002)wThe role of long-lived plasma cells in autoimmunity. Immunobiology 206:558–562

    Article  PubMed  Google Scholar 

  • Ascherio A, Munger KL (2007) Environmental risk factors for multiple sclerosis. Part I: the role of infection. Ann Neurol 61:288–299

    Article  PubMed  Google Scholar 

  • Bar-Or A et al (2008) Rituximab in relapsing-remitting multiple sclerosis: a 72-week, open-label, phase I trial. Ann Neurol 63:395–400

    Article  PubMed  CAS  Google Scholar 

  • Baranzini SE et al (1999) B cell repertoire diversity and clonal expansion in multiple sclerosis brain lesions. J Immunol 163:5133–5144

    PubMed  CAS  Google Scholar 

  • Berger T et al (2003) Antimyelin antibodies as a predictor of clinically definite multiple sclerosis after a first demyelinating event. N Engl J Med 349:139–145

    Article  PubMed  CAS  Google Scholar 

  • Bernasconi NL et al (2002) Maintenance of serological memory by polyclonal activation of human memory B cells. Science 298:2199–2202

    Article  PubMed  CAS  Google Scholar 

  • Bray PF et al (1992) Antibodies against Epstein-Barr nuclear antigen (EBNA) in multiple sclerosis CSF, and two pentapeptide sequence identities between EBNA and myelin basic protein. Neurology 42:1798–1804

    Article  PubMed  CAS  Google Scholar 

  • Breij EC et al (2008) Homogeneity of active demyelinating lesions in established multiple sclerosis. Ann Neurol 63:16–25

    Article  PubMed  CAS  Google Scholar 

  • Brunner C et al (1989) Differential ultrastructural localization of myelin basic protein, myelin/oligodendroglial glycoprotein, and 2’´,3’´-cyclic nucleotide 3’´-phosphodiesterase in the CNS of adult rats. J Neurochem 52:296–2304

    Article  PubMed  CAS  Google Scholar 

  • Cepok S et al (2001) Patterns of cerebrospinal fluid pathology correlate with disease progression in multiple sclerosis. Brain 124:2169–2176

    Article  PubMed  CAS  Google Scholar 

  • Cepok S et al (2003) The immune response at onset and during recovery from Borrelia burgdorferi meningoradiculitis. Arch Neurol 60:849–855

    Article  PubMed  Google Scholar 

  • Cepok S et al (2005a) Short-lived plasma blasts are the main B cell effector subset during the course of multiple sclerosis. Brain 128:1667–1676

    Article  PubMed  Google Scholar 

  • Cepok S et al (2005b) Identification of Epstein-Barr virus proteins as putative targets of the immune response in multiple sclerosis. J Clin Invest 115:1352–1360

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Cepok S et al (2006) Accumulation of class switched IgD-IgM- memory B cells in the cerebrospinal fluid during neuroinflammation. J Neuroimmunol 180:33–39

    Article  PubMed  CAS  Google Scholar 

  • Cepok S et al (2007) Viral load determines the B-cell response in the cerebrospinal fluid during human immunodeficiency virus infection. Ann Neurol 62:458–467

    Article  PubMed  Google Scholar 

  • Colombo M et al (2000) Accumulation of clonally related B lymphocytes in the cerebrospinal fluid of multiple sclerosis patients. J Immunol 164:2782–2789

    Article  PubMed  CAS  Google Scholar 

  • Corcione A et al (2004) Recapitulation of B cell differentiation in the central nervous system of patients with multiple sclerosis. Proc Natl Acad Sci U S A 101:11064–11069

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Cree BA et al (2005) An open label study of the effects of rituximab in neuromyelitis optica. Neurology 64:1270–1272

    Article  PubMed  CAS  Google Scholar 

  • Cross AH et al (2006) Rituximab reduces B cells and T cells in cerebrospinal fluid of multiple sclerosis patients. J Neuroimmunol 180:63–70

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Dal Bianco A et al (2008) Multiple sclerosis and Alzheimer’s disease. Ann Neurol 63:174–183

    Article  PubMed  Google Scholar 

  • DeLorenze GN et al (2006) Epstein-Barr virus and multiple sclerosis: evidence of association from a prospective study with long-term follow-up. Arch Neurol 63:839–844

    Article  PubMed  Google Scholar 

  • Freedman MS et al (2005) Recommended standard of cerebrospinal fluid analysis in the diagnosis of multiple sclerosis: a consensus statement. Arch Neurol 62:865–870

    Article  PubMed  Google Scholar 

  • Gaertner S et al (2004) Antibodies against glycosylated native MOG are elevated in patients with multiple sclerosis. Neurology 63:2381–2383

    Article  PubMed  CAS  Google Scholar 

  • Genain CP et al (1999) Identification of autoantibodies associated with myelin damage in multiple sclerosis. Nat Med 5:170–175

    Article  PubMed  CAS  Google Scholar 

  • Greeve I et al (2007) Anti-myelin antibodies in clinically isolated syndrome indicate the risk of multiple sclerosis in a Swiss cohort. Acta Neurol Scand 116:207–210

    Article  PubMed  CAS  Google Scholar 

  • Gunn MD et al (1998) A B-cell-homing chemokine made in lymphoid follicles activates Burkitt’s lymphoma receptor-1. Nature 391:799–803

    Article  PubMed  CAS  Google Scholar 

  • Haahr S, Hollsberg P (2006) Multiple sclerosis is linked to Epstein-Barr virus infection. Rev Med Virol 16:297–310

    Article  PubMed  CAS  Google Scholar 

  • Hansen K et al (1990) Oligoclonal Borrelia burgdorferi-specific IgG antibodies in cerebrospinal fluid in Lyme neuroborreliosis. J Infect Dis 161:1194–1202

    Article  PubMed  CAS  Google Scholar 

  • Hauser SL et al (2008) B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. N Engl J Med 358:676–688

    Article  PubMed  CAS  Google Scholar 

  • Hollsberg P et al (2003) Altered CD8+ T cell responses to selected Epstein-Barr virus immunodominant epitopes in patients with multiple sclerosis. Clin Exp Immunol 132:137–143

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ishizu T et al (2005) Intrathecal activation of the IL-17/IL-8 axis in opticospinal multiple sclerosis. Brain 128:988–1002

    Article  PubMed  Google Scholar 

  • Jarius S et al (2007) NMO-IgG in the diagnosis of neuromyelitis optica. Neurology 68:1076–1077

    Article  PubMed  CAS  Google Scholar 

  • Kabat EA et al (1948) Quantitative estimation of the albumin and gamma-globulin in normal and pathological cerebrospinal fluid by immunochemical methods. Am J Med 4:653–662

    Article  PubMed  CAS  Google Scholar 

  • Keegan M et al (2002) Plasma exchange for severe attacks of CNS demyelination: predictors of response. Neurology 58:143–146

    Article  PubMed  CAS  Google Scholar 

  • Keegan M et al (2005) Relation between humoral pathological changes in multiple sclerosis and response to therapeutic plasma exchange. Lancet 366:579–582

    Article  PubMed  Google Scholar 

  • Kerlero de Rosbo N et al (1990) Demyelination induced in aggregating brain cell cultures by a monoclonal antibody against myelin/oligodendrocyte glycoprotein. J Neurochem 55:583–587

    Article  PubMed  CAS  Google Scholar 

  • Krumbholz M et al (2005) BAFF is produced by astrocytes and up-regulated in multiple sclerosis lesions and primary central nervous system lymphoma. J Exp Med 201:195–200

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Krumbholz M et al (2006) Chemokines in multiple sclerosis: CXCL12 and CXCL13 up-regulation is differentially linked to CNS immune cell recruitment. Brain 129:200–211

    Article  PubMed  Google Scholar 

  • Kuenz B et al (2008) Cerebrospinal fluid B cells correlate with early brain inflammation in multiple sclerosis. PloSONE 3(7):e2559

    Article  CAS  Google Scholar 

  • Kuhle J et al (2007a) Antimyelin antibodies in clinically isolated syndromes correlate with inflammation in MRI and CSF. J Neurol 254:160–168

    Google Scholar 

  • Kuhle J et al (2007b) Lack of association between antimyelin antibodies and progression to multiple sclerosis. N Engl J Med 356:371–378

    Article  PubMed  CAS  Google Scholar 

  • Lalive PH et al (2006) Antibodies to native myelin oligodendrocyte glycoprotein are serologic markers of early inflammation in multiple sclerosis. Proc Natl Acad Sci U S A 103:2280–2285

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lennon VA et al (2004) A serum autoantibody marker of neuromyelitis optica: distinction from multiple sclerosis. Lancet 364:2106–2112

    Article  PubMed  CAS  Google Scholar 

  • Lennon VA et al (2005) IgG marker of optic-spinal multiple sclerosis binds to the aquaporin-4 water channel. J Exp Med 202:473–477

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Levin LI et al (2005) Temporal relationship between elevation of epstein-barr virus antibody titers and initial onset of neurological symptoms in multiple sclerosis. JAMA 293:2496–2500

    Article  PubMed  CAS  Google Scholar 

  • Lim ET et al (2005) Anti-myelin antibodies do not allow earlier diagnosis of multiple sclerosis. Mult Scler 11:492–494

    Article  PubMed  CAS  Google Scholar 

  • Lindert RB et al (1999) Multiple sclerosis: B- and T-cell responses to the extracellular domain of the myelin oligodendrocyte glycoprotein. Brain 122(Pt 11):2089–2100

    Article  PubMed  Google Scholar 

  • Linington C et al (1988) Augmentation of demyelination in rat acute allergic encephalomyelitis by circulating mouse monoclonal antibodies directed against a myelin/oligodendrocyte glycoprotein. Am J Pathol 130:443–454

    PubMed Central  PubMed  CAS  Google Scholar 

  • Link H, Huang YM (2006) Oligoclonal bands in multiple sclerosis cerebrospinal fluid: an update on methodology and clinical usefulness. J Neuroimmunol 180:17–28

    Article  PubMed  CAS  Google Scholar 

  • Lucchinetti CF et al (1996) Distinct patterns of multiple sclerosis pathology indicates heterogeneity on pathogenesis. Brain Pathol 6:259–274

    Article  PubMed  CAS  Google Scholar 

  • Lucchinetti C et al (2000) Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol 47:707–717

    Article  PubMed  CAS  Google Scholar 

  • Lucchinetti CF et al (2002) A role for humoral mechanisms in the pathogenesis of Devic’s neuromyelitis optica. Brain 125:1450–1461

    Article  PubMed  Google Scholar 

  • Lunemann JD et al (2006) Increased frequency and broadened specificity of latent EBV nuclear antigen-1-specific T cells in multiple sclerosis. Brain 129:1493–1506

    Article  PubMed  Google Scholar 

  • Luther SA et al (2003) Overlapping roles of CXCL13, interleukin 7 receptor alpha, and CCR7 ligands in lymph node development. J Exp Med 197:1191–1198

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • MacLennan IC (1994) Germinal centers. Annu Rev Immunol 12:117–139

    Article  PubMed  CAS  Google Scholar 

  • Magliozzi R et al (2004) Intracerebral expression of CXCL13 and BAFF is accompanied by formation of lymphoid follicle-like structures in the meninges of mice with relapsing experimental autoimmune encephalomyelitis. J Neuroimmunol 148:11–23

    Article  PubMed  CAS  Google Scholar 

  • Magliozzi R et al (2007) Meningeal B-cell follicles in secondary progressive multiple sclerosis associate with early onset of disease and severe cortical pathology. Brain 130:1089–1104

    Article  PubMed  Google Scholar 

  • Manz RA et al (2002) Humoral immunity and long-lived plasma cells. Curr Opin Immunol 14:517–521

    Article  PubMed  CAS  Google Scholar 

  • Manz RA et al (2005) Maintenance of serum antibody levels. Annu Rev Immunol 23:367–386

    Article  PubMed  CAS  Google Scholar 

  • Marignier R et al (2008) NMO-IgG and Devic’s neuromyelitis optica: a French experience. Mult Scler 14:440–445

    Article  PubMed  Google Scholar 

  • Marta CB et al (2005) Pathogenic myelin oligodendrocyte glycoprotein antibodies recognize glycosylated epitopes and perturb oligodendrocyte physiology. Proc Natl Acad Sci U S A 102:13992–13997

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Matsuoka T et al (2007) Heterogeneity of aquaporin-4 autoimmunity and spinal cord lesions in multiple sclerosis in Japanese. Brain 130:1206–1223

    Article  PubMed  Google Scholar 

  • McDonald WI et al (2001) Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of multiple sclerosis. Ann Neurol 50:121–127

    Article  PubMed  CAS  Google Scholar 

  • Misu T et al (2007) Loss of aquaporin 4 in lesions of neuromyelitis optica: distinction from multiple sclerosis. Brain 130:1224–1234

    Article  PubMed  CAS  Google Scholar 

  • Moldenhauer A et al (2005) Immunoadsorption patients with multiple sclerosis: an open-label pilot study. Eur J Clin Invest 35:523–530

    Article  PubMed  CAS  Google Scholar 

  • O’Connor KC et al (2007) Self-antigen tetramers discriminate between myelin autoantibodies to native or denatured protein. Nat Med 13:211–217

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Owens GP et al (1998) Restricted use of VH4 germline segments in an acute multiple sclerosis brain. Ann Neurol 43:236–243

    Article  PubMed  CAS  Google Scholar 

  • Owens GP et al (2003) Single-cell repertoire analysis demonstrates that clonal expansion is a prominent feature of the B cell response in multiple sclerosis cerebrospinal fluid. J Immunol 171:2725–2733

    Article  PubMed  CAS  Google Scholar 

  • Paul F et al (2007) Antibody to aquaporin 4 in the diagnosis of neuromyelitis optica. PLoS Med 4:e133

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Pelayo R et al (2007) Antimyelin antibodies with no progression to multiple sclerosis. N Engl J Med 356:426–428

    Article  PubMed  CAS  Google Scholar 

  • Pohl D et al (2006) High seroprevalence of Epstein-Barr virus in children with multiple sclerosis. Neurology 67:2063–2065

    Article  PubMed  CAS  Google Scholar 

  • Rauer S et al (2006) Antimyelin antibodies and the risk of relapse in patients with a primary demyelinating event. J Neurol Neurosurg Psych 77:739–742

    Article  CAS  Google Scholar 

  • Reff ME et al (1994) Depletion of B cells in vivo by a chimeric mouse human monoclonal antibody to CD20. Blood 83:435–445

    PubMed  CAS  Google Scholar 

  • Reiber H (1998) Cerebrospinal fluid–physiology, analysis and interpretation of protein patterns for diagnosis of neurological diseases. Mult Scler 4:99–107

    Article  PubMed  CAS  Google Scholar 

  • Reindl M et al (2006) Antibodies as biological markers for pathophysiological processes in MS. J Neuroimmunol 180:50–62

    Article  PubMed  CAS  Google Scholar 

  • Roemer SF et al (2007) Pattern-specific loss of aquaporin-4 immunoreactivity distinguishes neuromyelitis optica from multiple sclerosis. Brain 130:1194–1205

    Article  PubMed  Google Scholar 

  • Serafini B et al (2004) Detection of ectopic B-cell follicles with germinal centers in the meninges of patients with secondary progressive multiple sclerosis. Brain Pathol 14:164–174

    Article  PubMed  Google Scholar 

  • Serafini B et al (2007) Dysregulated Epstein-Barr virus infection in the multiple sclerosis brain. J Exp Med 204:2899–2912

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Shapiro-Shelef M, Calame K (2005) Regulation of plasma-cell development. Nat Rev Immunol 5:230–242

    Article  PubMed  CAS  Google Scholar 

  • Sharief MK, Thompson EJ (1991) Intrathecal immunoglobulin M synthesis in multiple sclerosis. Relationship with clinical and cerebrospinal fluid parameters. Brain 114(Pt 1A):181–195

    PubMed  Google Scholar 

  • Sharief MK et al (1990) Intrathecal synthesis of IgM in neurological diseases: a comparison between detection of oligoclonal bands and quantitative estimation. J Neurol Sci 96:131–142

    Article  PubMed  CAS  Google Scholar 

  • Storch MK et al (1998) Multiple sclerosis: in situ evidence for antibody- and complement-mediated demyelination. Ann Neurol 43:465–471

    Article  PubMed  CAS  Google Scholar 

  • Takahashi T et al (2007) Anti-aquaporin-4 antibody is involved in the pathogenesis of NMO: a study on antibody titre. Brain 130:1235–1243

    Article  PubMed  Google Scholar 

  • Thacker EL et al (2006) Infectious mononucleosis and risk for multiple sclerosis: a meta-analysis. Ann Neurol 59:499–503

    Article  PubMed  Google Scholar 

  • Tomassini V et al (2007) Anti-myelin antibodies predict the clinical outcome after a first episode suggestive of MS. Mult Scler 13:1086–1094

    Article  PubMed  CAS  Google Scholar 

  • Uccelli A et al (2005) Unveiling the enigma of the CNS as a B-cell fostering environment. Trends Immunol 26:254–259

    Article  PubMed  CAS  Google Scholar 

  • Villar LM et al (2002) Intrathecal IgM synthesis predicts the onset of new relapses and a worse disease course in MS. Neurology 59:555–559

    Article  PubMed  CAS  Google Scholar 

  • Villar LM et al (2003) Intrathecal IgM synthesis is a prognostic factor in multiple sclerosis. Ann Neurol 53:222–226

    Article  PubMed  CAS  Google Scholar 

  • Wandinger K et al (2000) Association between clinical disease activity and Epstein-Barr virus reactivation in MS. Neurology 55:178–184

    Article  PubMed  CAS  Google Scholar 

  • Wang LY, Fujinami RS (1997) Enhancement of EAE and induction of autoantibodies to T-cell epitopes in mice infected with a recombinant vaccinia virus encoding myelin proteolipid protein. J Neuroimmunol 75:75–83

    Article  PubMed  CAS  Google Scholar 

  • Wang H et al (2008) Myelin oligodendrocyte glycoprotein antibodies and multiple sclerosis in healthy young adults. Neurology 71:1142–1146

    Article  PubMed  CAS  Google Scholar 

  • Weinshenker BG et al (1999) A randomized trial of plasma exchange in acute central nervous system inflammatory demyelinating disease. Ann Neurol 46:878–886

    Article  PubMed  CAS  Google Scholar 

  • Weinshenker BG et al (2006a) NMO-IgG: a specific biomarker for neuromyelitis optica. Dis Markers 22:197–206

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Weinshenker BG et al (2006b) Neuromyelitis optica IgG predicts relapse after longitudinally extensive transverse myelitis. Ann Neurol 59:566–569

    Article  PubMed  CAS  Google Scholar 

  • Wingerchuk DM et al (1999) The clinical course of neuromyelitis optica (Devic’s syndrome). Neurology 53:1107–1114

    Article  PubMed  CAS  Google Scholar 

  • Wingerchuk DM et al (2006) Revised diagnostic criteria for neuromyelitis optica. Neurology 66:1485–1489

    Article  PubMed  CAS  Google Scholar 

  • Winges KM et al (2007) Analysis of multiple sclerosis cerebrospinal fluid reveals a continuum of clonally related antibody-secreting cells that are predominantly plasma blasts. J Neuroimmunol 192:226–234

    Article  PubMed  CAS  Google Scholar 

  • Wucherpfennig KW et al (1997) Recognition of the immunodominant myelin basic protein peptide by autoantibodies and HLA-DR2-restricted T cell clones from multiple sclerosis patients. Identity of key contact residues in the B-cell and T-cell epitopes. J Clin Invest 100:1114–1122

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Yu P et al (2002) B cells control the migration of a subset of dendritic cells into B cell follicles via CXC chemokine ligand 13 in a lymphotoxin-dependent fashion. J Immunol 168:5117–5123

    Article  PubMed  CAS  Google Scholar 

  • Zhou D et al (2006) Identification of a pathogenic antibody response to native myelin oligodendrocyte glycoprotein in multiple sclerosis. Proc Natl Acad Sci U S A 103:19057–19062

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Reindl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Reindl, M., Kuenz, B., Berger, T. (2009). B Cells and Antibodies in MS. In: Martin, R., Lutterotti, A. (eds) Molecular Basis of Multiple Sclerosis. Results and Problems in Cell Differentiation, vol 51. Springer, Berlin, Heidelberg. https://doi.org/10.1007/400_2008_16

Download citation

Publish with us

Policies and ethics