Skip to main content

The Quantum Computing Challenge

  • Chapter
  • First Online:
Informatics

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2000))

  • 834 Accesses

Abstract

The laws ofphysics imposes limits on increases in computing power. Two of these limits are interconnect wires in multicomputers and thermodynamic limits to energy dissipation in conventional irreversible technology. Quantum computing is a new computational technology that promises to eliminate problems of latency and wiring associated with parallel computers and the rapidly approaching ultimate limits to computing power imposed by the fundamental thermodynamics. Moreover, a quantum computer will be able to exponentially improve known classical algorithms for factoring, and quadratically improve every classical algorithm for searching an unstructured list, as well as give various speed-ups in communication complexity, by exploiting unique quantum mechanical features. Finally, a quantum computer may be able to simulate quantum mechanical systems, something which seems out of the question for classical computers, thus reaching the ultimate goal of replacing actual quantum mechanical experiments with simulated ones. On the downside, for some problems quantum mechanical computers cannot significantly improve the performance of classical computers.

Partially supported by the European Union through NeuroCOLT II Working Group and the QAIP Project.The author is also affiliated with the University ofAmsterdam.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Ambainis, A better lower bound for quantum algorithms searching an orderedlist, Proc. 40th IEEE Symp. Foundat. Comput. Sci., 352–357,1999.

    Google Scholar 

  2. A. Ambainis, Quantum lower bounds by quantum arguments, Proc. 32nd ACM Symp. Theor. Comput., 2000.

    Google Scholar 

  3. R. Beals, H. Buhrman, R. Cleve, M. Mosca, and R. de Wolf. Quantum lower bounds by polynomials. In Proc. 39th IEEE Symp. Foundat. Comput. Sci., 1998, 352–361.

    Google Scholar 

  4. C.H. Bennett. Logical reversibility ofcomputation. IBM J. Res. Develop., 17(1973),525–532.

    Article  MATH  MathSciNet  Google Scholar 

  5. C.H. Bennett, F. Bessette, G. Brassard, L. Salvail and J. Smolin, Experimental quantum cryptography, J. Cryptology 5:1 (1992), 3–28; C.H.Bennett,G.Brassard and A.Ekert,Quantum cryptography,Scientific American Oct.1992, 50-57.

    Article  MATH  Google Scholar 

  6. C.H. Bennett and P.W. Shor, Quantum information theory, IEEE Trans. Inform. Th., IT-44:6 (1998), 2724–2742.

    Article  MathSciNet  Google Scholar 

  7. E. Bernstein and U. Vazirani, Quantum complexity theory, SIAM J. Comput., 26:5 (1997), 1411–1473.

    Article  MATH  MathSciNet  Google Scholar 

  8. R. Cleve and H. Buhrman, Substituting quantum entanglement for communication, Physical Review A,56:2 (1997), 1201–1204.

    Google Scholar 

  9. M.A. Nielsen and I.L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press, 2000.

    Google Scholar 

  10. H. Buhrman, R. Cleve, and A. Wigderson. Quantum vs. classical communication and computation. In Proc. 30th ACM Symp. Theor. Comput., 1998, 63–68.

    Google Scholar 

  11. L.K. Grover. A fast quantum mechanical algorithm for database search. In Proc. 28th ACM Symp. Theor. Comput., 1996, 212–219.

    Google Scholar 

  12. P.W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Journal on Computing 26:5 (1997), 1484–1509.

    Article  MATH  MathSciNet  Google Scholar 

  13. P.W. Shor, Introduction to quantum algorithms, http://xxx.lanl.gov/abs/quantph/0005003

  14. P. Benioff., J. Stat. Phys., 22 (1980), 563–591, also J. Math. Phys., 22(1981),495–507, Int. J. Theoret. Phys., 21(1982), 177-201, Phys. Rev. Letters 48(1982),1581-1585, J. Stat. Phys.,29(1982),515. 546,Phys. Rev. Letters 53(1984),1203,Ann. New York Acad. Sci.,480(1986),475-486.

    Article  MathSciNet  Google Scholar 

  15. D.P. DiVincenzo, T. Mor, P. W. Shor, J.A. Smolin, B.M. Terhal, Unextendible Product Bases,Uncompletable Product Bases and Bound Entanglement, http://xxx.lanl.gov/abs/quant-ph/9908070

  16. D. Deutsch, Quantum theory,the Church-Turing principle and the universal quantum computer. Proc. Royal Society London, Series A 400 (1985), 97–117; see also Proc. Royal Society London, Series A 425(1989),73. 90;with R.Josza,Proc. Royal Society London, Series A 439(1992),553. 558.

    Article  MATH  MathSciNet  Google Scholar 

  17. R.P. Feynman, Simulating physics with computers, Int. J. Theoret. Physics 21 (1982), 467–488;Quantum mechanical computers.Foundations of Physics 16(1986),507. 531.(Originally published in Optics News February 1985);Tiny Computers Obeying Quantum Mechanical Laws.In:New Directions in Physics: The Los Alamos 40th Anniversary Volume, N.Metropolis and D.M.Kerr and G. Rota,Eds.,Academic ress,,Boston,1987,7. 25.

    Article  MathSciNet  Google Scholar 

  18. R. Landauer. Irreversibility and heat generation in the computing process. IBM J. Res. Develop., 5 (1961), 183–191.

    MathSciNet  MATH  Google Scholar 

  19. A.K. Lenstra and H.W. Lenstra, Jr.(Eds.), The Development of the Number Field Sieve Lecture Notes in Mathematics,Vol.1554, Springer-Verlag, Berlin, 1993.

    Google Scholar 

  20. M. Li and P.M.B. Vitányi, An Introduction to Kolmogorov Complexity and Its Applications 2nd Edition, Springer-Verlag, New York, 1997.

    Google Scholar 

  21. Unruh, W.G., Maintaining coherence in quantum computers, Physical Review A 51 (1995), 992..

    Article  MathSciNet  Google Scholar 

  22. L.M.K. Vandersypen, M. Steffen, G. Breyta, C. S. Yannoni, R. Cleve, I. L. Chuang, Experimental realization oforder-finding with a quantum computer, http://xxx.lanl.gov/abs/quant-ph/0008065

  23. P.M.B. Vitányi, Area penalty for sublinear signal propagation delay on chip, Proc. 26th IEEE Symp. Foundat. Comput. Sci., 1985, 197–207.

    Google Scholar 

  24. P.M.B. Vitányi, Locality,communication and interconnect length in multicomputers, SIAM J. Computing, 17 (1988), 659–672.

    Article  MATH  Google Scholar 

  25. P.M.B. Vitányi, Quantum Kolmogorov Complexity Based on Classical Descriptions, IEEE Trans. Inform. Th., Toappear.

    Google Scholar 

  26. C. Zalka, Efficient simulations of quantum mechanical systesms by quantum computers, Proc. Royal Soc. London, Ser. A 454 (1998), 313–322.

    Article  MATH  Google Scholar 

  27. W.H. Zurek, Decoherence and the transition from quantum to classical, Physics Today 44 (1991), 36–44.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vitányi, P. (2001). The Quantum Computing Challenge. In: Wilhelm, R. (eds) Informatics. Lecture Notes in Computer Science, vol 2000. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44577-3_15

Download citation

  • DOI: https://doi.org/10.1007/3-540-44577-3_15

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41635-7

  • Online ISBN: 978-3-540-44577-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics