Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 688))

  • 893 Accesses

Abstract

We review some recent results on Statistical Mechanics approach to dense granular media. In particular, by analytical mean field investigation we derive the phase diagram of a monodisperse system. We show that “jamming” corresponds to a phase transition from a “.uid” to a “glassy” phase. The nature of such a “glassy” phase turns out to be the same found in mean field models for glass formers. This gives quantitative evidence to the idea of a unified description of the “jamming” transition in granular media and thermal systems, such as glasses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Coniglio and H.J. Herrmann, Physica A 225, 1 (1996); M. Nicodemi, A. Coniglio and H.J. Herrmann, Phys. Rev. E 55, 3962 (1997).

    Article  ADS  Google Scholar 

  2. A.J. Liu and S.R. Nagel, Nature 396, 21 (1998).

    Article  ADS  Google Scholar 

  3. C.S. O’Hern, S.A. Langer, A.J. Liu, S.R. Nagel, Phys. Rev. Lett. 86, 111 (2001).

    Article  ADS  Google Scholar 

  4. G. D’Anna and G. Gremaud, Nature 413, 407 (2001); G. D’Anna, P. Mayor, A. Barrat, V. Loreto, and F. Nori, Nature 424, 909 (2003).

    Article  ADS  Google Scholar 

  5. A. Mehta and J. Berg, Europhys. Lett. 56, 784 (2001).

    Article  ADS  Google Scholar 

  6. C.S. O’Hern, L.E. Silbert, A.J. Liu, S.R. Nagel, Phys. Rev. E 68, 011306 (2003).

    Article  ADS  Google Scholar 

  7. M. Nicodemi and A. Coniglio, Phys. Rev. Lett. 82, 916 (1999).

    Article  ADS  Google Scholar 

  8. M. Nicodemi, Phys. Rev. Lett. 82, 3734 (1999). A. Barrat, J. Kurchan, V. Loreto, and M. Sellitto, Phys. Rev. Lett. 85, 5034 (2000). J.J. Brey, A. Prados, B. Sánchez-Rey, Physica A 275, 310 (2000). D. S. Dean and A. Lefèvre, Phys. Rev. Lett. 86, 5639 (2001). H. A. Makse and J. Kurchan, Nature 415, 614 (2002). J. Berg, S. Franz and M. Sellitto, Eur. Phys. J. B 26, 349 (2002). G. De Smedt, C. Godreche, J.M. Luck, Eur. Phys. J. B 32, 215–225 (2003). G. Tarjus and P. Viot, Phys. Rev. E 69, 011307 (2004).

    Article  ADS  Google Scholar 

  9. A. Coniglio and M. Nicodemi, Physica A 296, 451 (2001). A. Fierro, M. Nicodemi and A. Coniglio, Europhys. Lett. 59, 642 (2002); Europhys. Lett. 60, 684 (2002); Phys. Rev. E 66, 061301 (2002).

    Article  MATH  ADS  Google Scholar 

  10. S.F. Edwards and R.B.S. Oakeshott, Physica A 157, 1080 (1989). A. Mehta and S.F. Edwards, Physica A 157, 1091 (1989). S.F. Edwards, in Current Trends in the physics of Materials, (Italian Phys. Soc., North Holland, Amsterdam, 1990).

    Article  MathSciNet  ADS  Google Scholar 

  11. M. Mézard and G. Parisi, Eur. Phys. J. B 20, 217 (2001).

    Article  ADS  Google Scholar 

  12. G. Biroli and M. Mézard, Phys. Rev. Lett. 88, 025501 (2002).

    Article  ADS  Google Scholar 

  13. M. PicaCiamarra, M. Tarzia, A. de Candia, and A. Coniglio, Phys. Rev. E 67, 057105 (2003); Phys. Rev. E 68, 066111 (2003).

    Article  ADS  Google Scholar 

  14. L.F. Cugliandolo and J. Kurchan, Phys. Rev. Lett. 71, 173 (1993). J. Kurchan, cond-mat/981S347 and in “Jamming and Rheology”, A.J. Liu and S.R. Nagel Eds., Taylor and Francis, London (2001).

    Article  ADS  Google Scholar 

  15. M. Tarzia, A. de Candia, A. Fierro, M. Nicodemi and A. Coniglio, Europhys. Lett. 66, 531 (2004).

    Article  ADS  Google Scholar 

  16. P. Philippe and D. Bideau, Europhys. Lett. 60, 677 (2002).

    Article  ADS  Google Scholar 

  17. E. Clement and J. Rajchenbach, Europhys. Lett. 16, 133 (1991).

    Article  ADS  Google Scholar 

  18. M. Tarzia, A. Fierro, M. Nicodemi and A. Coniglio, Phys. Rev. Lett. 93, 198002 (2004).

    Article  ADS  Google Scholar 

  19. In the case of uniform density profile, i.e. σ(z) = const., we have σ(z) = Φ (where Φ N/L 2(〈2〈 – 1)) below the maximum height and zero above.

    Google Scholar 

  20. C. Toninelli, G. Biroli, D. S. Fisher, Phys. Rev. Lett. 92, 185504 (2004).

    Article  ADS  Google Scholar 

  21. J.B. Knight, C. G. Fandrich, C. N. Lau, H. M. Jaeger, and S. R. Nagel, Phys. Rev. E 51, 3957 (1995). E. R. Nowak, J. B. Knight, E. Ben-Naim, H. M. Jaeger, and S.R. Nagel, Phys. Rev. E 57, 1971 (1998).

    Article  ADS  Google Scholar 

  22. W. Gotze, in Liquids, Freezing and Glass Transition, eds. J.P. Hansen, D. Levesque, and Zinn-Justin, Elsevier (1991). T. Franosch, M. Fuchs, W. Gotze, M.R. Mayr and A.P. Singh, Phys. Rev. E 55, 7153 (1997). M. Fuchs, W. Gotze and M. R. Mayr, Phys. Rev. E 58, 3384 (1998).

    Google Scholar 

  23. The ß-correlator predicted by the MCT is given by Φ(t) = f c+g(t/tσ), where g(t/t σ) α (t/tσ) for t 0《t《tσ, and g(t/t σ)b for t σ《t《Γα

    Google Scholar 

  24. S. Franz, C. Donati, G. Parisi and S. C. Glotzer, Philos. Mag. B 79, 1827 (1999). C. Donati, S. Franz, S. C. Glotzer and G. Parisi, J. Non-cryst. Solids, 307, 215 (2002)

    Article  ADS  Google Scholar 

  25. S. C. Glotzer, V. N. Novikov, and T. B. Schrøder, J. Chem. Phys. 112, 509 (2000).

    Article  ADS  Google Scholar 

  26. Interestingly this anomalous behavior seems to occur around the crossover temperature T D previously calculated. The origin of this behavior, also observed in molecular dynamics simulations of a usual glass former [25], is still unclear.

    Google Scholar 

  27. A. Fierro, M. Nicodemi, M. Tarzia, A. de Candia and A. Coniglio, cond-mat/0412120.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Coniglio, A., Fierro, A., de Candia, A., Nicodemi, M., Tarzia, M., Ciamarra, M.P. (2006). Jamming in Dense Granular Media. In: Miguel, M.C., Rubi, M. (eds) Jamming, Yielding, and Irreversible Deformation in Condensed Matter. Lecture Notes in Physics, vol 688. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-33204-9_4

Download citation

Publish with us

Policies and ethics