Skip to main content

Drug Therapies to Prevent Coronary Plaque Rupture and Erosion: Present and Future

  • Chapter
Atherosclerosis: Diet and Drugs

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 170))

Abstract

Patients at high risk for coronary heart disease usually have a number of atherosclerotic plaques in their coronary arteries. Some plaques grow inward and, once they have caused a critical degree of luminal stenosis, lead to chronic anginal symptoms. Other plaques grow outward and remain silent unless they disrupt and trigger an acute coronary event. Either type of plaque may become vulnerable to rupture or erosion once they have reached an advanced stage. Typically, a highly stenotic fibrotic plaque is prone to erosion, whereas an advanced lipid-rich thin-cap fibroatheroma is prone to rupture. Because of the multitude and complex nature of the coronary lesions and our inability to detect silent rupture-prone plaques, the best practical approach to prevent acute coronary events is to treat the vulnerable patient, i.e., to eliminate the risk factors of coronary disease. Despite such preventive measures, a sizable number of patients still experience acute coronary events due to plaque erosion or rupture. Thus, there is room for new avenues to pharmacologically stabilize vulnerable plaques. The development of new noninvasive tools to detect the progression and regression of individual non-stenotic rupture-prone plaques will allow testing of such novel pharmacotherapies. Because no specific plaque-targeted therapies are available at present, we give an overview of the current pharmacotherapy to treat the vulnerable patient and also discuss potential novel therapies to prevent acute coronary events.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen SP, Dashwood MR, Chester AH, et al. (1993) Influence of atherosclerosis on the vascular reactivity of isolated human epicardial coronary arteries to leukotriene C4. Cardioscience 4:4754

    Google Scholar 

  • Ambrose JA, D'Agate DJ (2004) Drug therapy for the vulnerable plaque. In: Waksman R, Serruys PW (eds) Handbook of the vulnerable plaque. Taylor & Francis Group, London, pp 255–281

    Google Scholar 

  • Assmus B, Urbich C, Aicher A, et al. (2003) HMG-CoA reductase inhibitors reduce senescence and increase proliferation of endothelial progenitor cells via regulation of cell cycle regulatory genes. Circ Res 92:1049–1055

    PubMed  Google Scholar 

  • Baker CS, Hall RJ, Evans TJ, et al. (1999) Cyclooxygenase-2 is widely expressed in atherosclerotic lesions affecting native and transplanted human coronary arteries and colocalizes with inducible nitric oxide synthase and nitrotyrosine particularly in macrophages. Arterioscler Thromb Vasc Biol 19:646–655

    PubMed  Google Scholar 

  • Bank AJ, Versluis A, Dodge SM, et al. (2000) Atherosclerotic plaque rupture: a fatigue process? Med Hypotheses 55:480–484

    Article  PubMed  Google Scholar 

  • Barbier O, Torra IP, Duguay Y, et al. (2002) Pleiotropic actions of peroxisome proliferator-activated receptors in lipid metabolism and atherosclerosis. Arterioscler Thromb Vasc Biol 22:717–726

    Article  PubMed  Google Scholar 

  • Barter PJ, Nicholls S, Rye KA, et al. (2004) Antiinflammatory properties of HDL. Circ Res 95:764–772

    Article  PubMed  Google Scholar 

  • Beaudeux JL, Giral P, Bruckert E (2004) Matrix metalloproteinases, inflammation and atherosclerosis: therapeutic perspectives. Clin Chem Lab Med 42:121–131

    Article  PubMed  Google Scholar 

  • Bellosta S, Via D, Canavesi M, et al. (1998) HMG-CoA reductase inhibitors reduce MMP-9 secretion by macrophages. Arterioscler Thromb Vasc Biol 18:1671–1678

    PubMed  Google Scholar 

  • Berk BC, Min W, Yan C, et al. (2002) Atheroprotective Mechanisms Activated by Fluid Shear Stress in Endothelial Cells. Drug News Perspect 15:133–139

    Article  PubMed  Google Scholar 

  • Bogaty P, Hackett D, Davies G, et al. (1994) Vasoreactivity of the culprit lesion in unstable angina. Circulation 90:5–11

    PubMed  Google Scholar 

  • Bombardier C, Laine L, Reicin A, et al. (2000) Comparison of upper gastrointestinal toxicity of rofecoxib and naproxen in patients with rheumatoid arthritis. VIGOR Study Group. N Engl J Med 343:1520–1528

    PubMed  Google Scholar 

  • Bosch T, Wendler T (2004) State of the art of low-density lipoprotein apheresis in the year. Ther Apher Dial 8:76–79

    Article  PubMed  Google Scholar 

  • Brown BG, Zhao XQ, Sacco DE, et al. (1993) Lipid lowering and plaque regression. New insights into prevention of plaque disruption and clinical events in coronary disease. Circulation 87:1781–1791

    PubMed  Google Scholar 

  • Brown PD (2000) Ongoing trials with matrix metalloproteinase inhibitors. Expert Opin Investig Drugs 9:2167–2177

    PubMed  Google Scholar 

  • Bruckert E, Giral P, Tellier P (2003) Perspectives in cholesterol-lowering therapy: the role of ezetimibe, a new selective inhibitor of intestinal cholesterol absorption. Circulation 107:3124–3128.

    Article  PubMed  Google Scholar 

  • Bürrig KF (1991) The endothelium of advanced arteriosclerotic plaques in humans. Arterioscler Thromb 11:1678–1689

    PubMed  Google Scholar 

  • CAPRIE Steering Committee (1996) A randomised, blinded trial of clopidogrel versus aspirin in patients at risk of ischaemic events (CAPRIE). Lancet 348:1329–1339

    Google Scholar 

  • Carr AC, Zhu BZ, Frei B (2000) Potential antiatherogenic mechanisms of ascorbate (vitamin C) and alpha-tocopherol (vitamin E). Circ Res 87:349–354

    PubMed  Google Scholar 

  • Chapman MJ (2003) Fibrates in 2003: therapeutic action in atherogenic dyslipidaemia and future perspectives. Atherosclerosis 171:1–13

    PubMed  Google Scholar 

  • Chisolm GM, Steinberg D (2000) The oxidative modification hypothesis of atherogenesis: an overview. Free Radic Biol Med 28:1815–1826

    Article  PubMed  Google Scholar 

  • Chobanian AV, Brecher P, Haudenschild CC, et al. (1986) Effects of hypertension and of antihypertensive therapy on atherosclerosis. Hypertension 8(Suppl I):I-15–I-21

    Google Scholar 

  • Cipollone F, Fazia M, Iezzi A, et al. (2004) Blockade of the angiotensin II type 1 receptor stabilizes atherosclerotic plaques in humans by inhibiting prostaglandin E2-dependent matrix metalloproteinase activity. Circulation 109:1482–1488

    Article  PubMed  Google Scholar 

  • Clejan S, Japa S, Clemetson C, et al. (2002) Blood histamine is associated with coronary artery disease, cardiac events and severity of inflammation and atherosclerosis. J Cell Mol Med 6:583–592

    PubMed  Google Scholar 

  • Colwell JA (2004) Antiplatelet agents for the prevention of cardiovascular disease in diabetes mellitus. Am J Cardiovasc Drugs 4:87–106

    PubMed  Google Scholar 

  • Crisby M, Nordin-Fredriksson G, Shah PK, et al. (2001) Pravastatin treatment increases collagen content and decreases lipid content, inflammation, metalloproteinases, and cell death in human carotid plaques: implications for plaque stabilization. Circulation 103:926–933

    PubMed  Google Scholar 

  • Davignon J (2004) Beneficial cardiovascular pleiotropic effects of statins. Circulation 109(23 Suppl 1):III39–43.

    PubMed  Google Scholar 

  • De Caterina R, Zampolli A (2004) From asthma to atherosclerosis — 5-lipoxygenase, leukotrienes, and inflammation. N Engl J Med 350:4–7

    PubMed  Google Scholar 

  • Diabetes Atherosclerosis Intervention Study Group (2001) Effect of fenofibrate on progression of coronary-artery disease in type 2 diabetes: the Diabetes Atherosclerosis Intervention Study, a randomised study. Lancet 357:905–910

    Google Scholar 

  • Diener HC, Bogousslavsky J, Brass LM, et al. (2004) Aspirin and clopidogrel compared with clopidogrel alone after recent ischaemic stroke or transient ischaemic attack in high-risk patients (MATCH): randomised, double-blind, placebo-controlled trial. Lancet 364:331–337

    Article  PubMed  Google Scholar 

  • Doggrell SA, Wanstall JC (2004) Vascular chymase: pathophysiological role and therapeutic potential of inhibition. Cardiovasc Res 61:653–662

    PubMed  Google Scholar 

  • Drazen JM, Israel E, O'Byrne PM (1999) Drug therapy: Treatment of asthma with drugs modifying the leukotriene pathway. N Engl J Med 340:197–206

    Article  PubMed  Google Scholar 

  • Duguid JB (1946) Thrombosis as a factor in the pathogenesis of coronary atherosclerosis. J Pathol Bacteriol 58:207–212

    Google Scholar 

  • Espinola-Klein C, Rupprecht HJ, Blankenberg S, et al. (2002) Impact of infectious burden on progression of carotid atherosclerosis. Stroke 33:2581–2586

    Article  PubMed  Google Scholar 

  • Falk E (1983) Plaque rupture with severe pre-existing stenosis precipitating coronary thrombosis. Characteristics of coronary atherosclerotic plaques underlying fatal occlusive thrombi. Br Heart J 50:127–134

    PubMed  Google Scholar 

  • Falk E (1992) Why do plaques rupture? Circulation 86(Suppl III):III30–42

    PubMed  Google Scholar 

  • Fayad ZA (2003) MR imaging for the noninvasive assessment of atherothrombotic plaques. Magn Reson Imaging Clin N Am 11:101–113

    Article  PubMed  Google Scholar 

  • Finet G, Ohayon J, Rioufol G (2004) Biomechanical interaction between cap thickness, lipid core composition and blood pressure in vulnerable coronary plaque: impact on stability or instability. Coron Artery Dis 15:13–20

    Article  PubMed  Google Scholar 

  • FitzGerald GA (2004) Coxibs and cardiovascular disease. N Engl J Med 351:1709–1711

    PubMed  Google Scholar 

  • Forman MB, Oates JA, Robertson D, et al. (1985) Increased adventitial mast cells in a patient with coronary spasm. N Engl J Med 313:1138–1141

    PubMed  Google Scholar 

  • Forrester JS (2002) Prevention of plaque rupture: a new paradigm of therapy. Ann Intern Med 137:823–833

    PubMed  Google Scholar 

  • Fuster V (2002) Assessing and modifying vulnerable atherosclerotic plaque. Futura Publishing Company, New York

    Google Scholar 

  • Galli SJ, Wedemeyer J, Tsai M (2002) Analyzing the roles of mast cells and basophils in host defense and other biological responses. Int J Hematol 75:363–369

    PubMed  Google Scholar 

  • Garcia Rodriguez LA, Varas-Lorenzo C, Maguire A, et al. (2004)Nonsteroidal antiinflammatory drugs and the risk of myocardial infarction in the general population. Circulation 109:3000–3006

    PubMed  Google Scholar 

  • Gertz SD, Uretsky G, Wajnberg RS, et al. (1981) Endothelial cell damage and thrombus formation after partial arterial constriction: relevance to the role of coronary artery spasm in the pathogenesis of myocardial infarction. Circulation 63:476–486

    PubMed  Google Scholar 

  • Glagov S, Weisenberg E, Zarins CK, et al. (1987) Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med 316:1371–1375

    PubMed  Google Scholar 

  • Grundy SM, Cleeman JI, Merz CN, et al. (2004) Implications of recent clinical trials for the National Cholesterol Education Program Adult Treatment Panel III Guidelines. J Am Coll Cardiol 44:720–732

    Article  PubMed  Google Scholar 

  • Gurfinkel EP, Leon de la Fuente R, Mendiz O, et al. (2004) Flu vaccination in acute coronary syndromes and planned percutaneous coronary interventions (FLUVACS) Study. Eur Heart J 25:25–31

    Article  PubMed  Google Scholar 

  • Guyton JR, Klemp KF (1994) Development of the atherosclerotic core region. Chemical and ultrastructural analysis of microdissected atherosclerotic lesions from human aorta. Arterioscler Thromb 14:1305–1314

    PubMed  Google Scholar 

  • Hackett D, Davies G, Chierchia S, et al. (1987) Intermittent coronary occlusion in acute myocardial infarction: Value of combined thrombolytic and vasodilator therapy. N Engl J Med 317:1055–1059

    PubMed  Google Scholar 

  • Haffner SM, Lehto S, Ronnemaa T, et al. (1998) Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med 339:229–234

    PubMed  Google Scholar 

  • Hankey GJ, Eikelboom JW (2003) Antiplatelet drugs. Med J Aust 178:568–574

    PubMed  Google Scholar 

  • Hansson GK (2001) Immune mechanisms in atherosclerosis. Arterioscler Thromb Vasc Biol 21:1876–1890

    PubMed  Google Scholar 

  • Hansson GK (2002) Vaccination against atherosclerosis: science or fiction? Circulation 106:1599–1601

    Article  PubMed  Google Scholar 

  • He S, Gaca MD, Walls AF (2001) The activation of synovial mast cells: modulation of histamine release by tryptase and chymase and their inhibitors. Eur J Pharmacol 412:223–229

    PubMed  Google Scholar 

  • Hennekens CH, Albert CM, Godfried SL, et al. (1996) Adjunctive drug therapy of acute myocardial infarction—evidence from clinical trials. N Engl J Med 335:1660–1667

    Article  PubMed  Google Scholar 

  • Hill JM, Zalos G, Halcox JP, et al. (2003) Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med 348:593–600

    Article  PubMed  Google Scholar 

  • Huang M, Pang X, Letourneau R, et al. (2002) Acute stress induces cardiac mast cell activation and histamine release, effects that are increased in apolipoprotein E knockout mice. Cardiovasc Res 55:150–160

    PubMed  Google Scholar 

  • Hutter R, Valdiviezo C, Sauter BV, et al. (2004) Caspase-3 and tissue factor expression in lipid-rich plaque macrophages: evidence for apoptosis as link between inflammation and atherothrombosis. Circulation 109:2001–2008

    PubMed  Google Scholar 

  • Kalsner S (1995) Coronary artery spasm. Multiple causes and multiple roles in heart disease. Biochem Pharmacol 49:859–871

    Article  PubMed  Google Scholar 

  • Kalsner S, Richards R (1984) Coronary arteries of cardiac patients are hyperreactive and contain stores of amines: a mechanism for coronary spasm. Science 223:1435–1437

    PubMed  Google Scholar 

  • Kario K, McEwen BS, Pickering TG (2003) Disasters and the heart: a review of the effects of earthquake-induced stress on cardiovascular disease. Hypertens Res 26:355–367

    Article  PubMed  Google Scholar 

  • Kimmel SE, Berlin JA, Reilly M, et al. (2004) The effects of nonselective non-aspirin non-steroidal anti-inflammatory medications on the risk of nonfatal myocardial infarction and their interaction with aspirin. J Am Coll Cardiol 43:985–990

    PubMed  Google Scholar 

  • Kinlay S, Behrendt D, Fang JC, et al. (2004) Long-term effect of combined vitamins E and C on coronary and peripheral endothelial function. J Am Coll Cardiol 43:629–634

    PubMed  Google Scholar 

  • Kolodgie FD, Burke AP, Farb A, et al. (2002) Differential accumulation of proteoglycans and hyaluronan in culprit lesions: insights into plaque erosion. Arterioscler Thromb Vasc Biol 22:1642–1648

    PubMed  Google Scholar 

  • Kondo T, Hayashi M, Takeshita K, et al. (2004) Smoking cessation rapidly increases circulating progenitor cells in peripheral blood in chronic smokers. Arterioscler Thromb Vasc Biol 24:1442–1447

    PubMed  Google Scholar 

  • Kovanen PT, Kaartinen M, Paavonen T (1995) Infiltrates of activated mast cells at the site of coronary atheromatous erosion or rupture in myocardial infarction. Circulation 92:1084–1088

    PubMed  Google Scholar 

  • Laine P, Kaartinen M, Penttilä A, et al. (1999) Association between myocardial infarction and the mast cells in the adventitia of the infarct-related coronary artery. Circulation 99:361–369

    PubMed  Google Scholar 

  • Laine P, Naukkarinen A, Heikkilä L, et al. (2000) Adventitial mast cells connect with sensory nerve fibers in atherosclerotic coronary arteries. Circulation 101:1665–1669

    PubMed  Google Scholar 

  • Laufs U, Werner N, Link A, et al. (2004) Physical training increases endothelial progenitor cells, inhibits neointima formation, and enhances angiogenesis. Circulation 109:220–226

    PubMed  Google Scholar 

  • Law MR, Wald NJ, Rudnincka R (2003) Quantifying effect of statins on low density lipoprotein cholesterol, ischaemic heart disease, and stroke: systematic review and meta-analysis. BMJ 326:1–7

    Google Scholar 

  • Le Goff W, Guerin M, Chapman MJ (2004) Pharmacological modulation of cholesteryl ester transfer protein, a new therapeutic target in atherogenic dyslipidemia. Pharmacol Ther 101:17–38

    Article  PubMed  Google Scholar 

  • Libby P (1995) Molecular bases of the acute coronary syndromes. Circulation 91:2844–2850

    PubMed  Google Scholar 

  • Libby P (2002) Inflammation in atherosclerosis. Nature 420:868–874

    Article  PubMed  Google Scholar 

  • Libby P, Aikawa M (2002) Stabilization of atherosclerotic plaques: new mechanisms and clinical targets. Nat Med 8:1257–1262

    Article  PubMed  Google Scholar 

  • Lindstedt KA, Kovanen PT (2004) Mast cells in vulnerable coronary plaques: potential mechanisms linking mast cell activation to plaque erosion and rupture. Curr Opin Lipidol 15:567–573

    PubMed  Google Scholar 

  • Lindstedt KA, Leskinen MJ, Kovanen PT (2004) Proteolysis of the pericellular matrix — a novel element determining cell survival and death in the pathogenesis of plaque erosion and rupture. Arterioscler Thromb Vasc Biol 24:1350–1358

    PubMed  Google Scholar 

  • Lipid Research Clinics Program (1984) The Lipid Research Clinics Coronary Primary Prevention Trial results II. The relationship of reduction in incidence of coronary heart disease to cholesterol lowering. JAMA 251:365–374

    Google Scholar 

  • Little WC, Constantinescu M, Applegate RJ, et al. (1988) Can coronary angiography predict the site of a subsequent myocardial infarction in patients with mild-to-moderate coronary artery disease? Circulation 78:1157–1166

    PubMed  Google Scholar 

  • Liu J, Sukhova GK, Sun JS, et al. (2004) Lysosomal cysteine proteases in atherosclerosis. Arterioscler Thromb Vasc Biol 24:1359–1366

    PubMed  Google Scholar 

  • Lutgens E, van Suylen RJ, Faber BC, et al. (2003) Atherosclerotic plaque rupture: local or systemic process? Arterioscler Thromb Vasc Biol 23:2123–2130

    PubMed  Google Scholar 

  • Madjid M, Naghavi M, Litovsky S, et al. (2003) Influenza and cardiovascular disease: a new opportunity for prevention and the need for further studies. Circulation 108:2730–2736

    PubMed  Google Scholar 

  • Mann J, Davies MJ (1999) Mechanisms of progression in native coronary artery disease: role of healed plaque disruption. Heart 82:265–268

    PubMed  Google Scholar 

  • Manninen V, Tenkanen L, Koskinen P, et al. (1992) Joint effects of serum triglyceride and LDL cholesterol and HDL cholesterol concentrations on coronary heart disease risk in the Helsinki Heart Study. Implications for treatment. Circulation 85:37–45

    PubMed  Google Scholar 

  • Marx N, Kehrle B, Kohlhammer K, et al. (2002) PPAR activators as antiinflammatory mediators in human T lymphocytes: implications for atherosclerosis and transplantation-associated arteriosclerosis. Circ Res 90:703–710

    PubMed  Google Scholar 

  • Marx N, Duez H, Fruchart JC, et al. (2004) Peroxisome proliferator-activated receptors and atherogenesis: regulators of gene expression in vascular cells. Circ Res 94:1168–1178

    Article  PubMed  Google Scholar 

  • Meagher E, Rader DJ (2001) Antioxidant therapy and atherosclerosis: animal and human studies. Trends Cardiovasc Med 11:162–165

    PubMed  Google Scholar 

  • Melo LG, Pachori AS, Kong D, et al. (2004) Gene and cell-based therapies for heart disease. FASEB J 18:648–663

    PubMed  Google Scholar 

  • Min TQ, Zhu CJ, Xiang WX, et al. (2004) Improvement in endothelial progenitor cells from peripheral blood by ramipril therapy in patients with stable coronary artery disease. Cardiovasc Drugs Ther 18:203–209

    Article  PubMed  Google Scholar 

  • Monroe VS, Kerensky RA, Rivera E, et al. (2003) Pharmacologic plaque passivation for the reduction of recurrent cardiac events in acute coronary syndromes. J Am Coll Cardiol 41:23S–30S

    Article  PubMed  Google Scholar 

  • Murakami T, Mizuno S, Ohsato K, et al. (1999) Effects of troglitazone on frequency of coronary vasospastic-induced angina pectoris in patients with diabetes mellitus. Am J Cardiol 84:92–94

    Article  PubMed  Google Scholar 

  • Naghavi M, Barlas Z, Siadaty S, et al. (2000) Association of influenza vaccination and reduced risk of recurrent myocardial infarction. Circulation 102:3039–3045

    PubMed  Google Scholar 

  • Naghavi M, Libby P, Falk E, et al. (2003a) From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part I. Circulation 108:1664–1672

    Article  PubMed  Google Scholar 

  • Naghavi M, Libby P, Falk E, et al. (2003b) From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part II. Circulation 108:1772–1778

    Article  PubMed  Google Scholar 

  • Neumann T, Woiwod T, Neumann A, et al. (2004) Cardiovascular risk factors and probability for cardiovascular events in HIV-infected patients. Part II: gender differences. Eur J Med Res 9:55–60

    PubMed  Google Scholar 

  • Nichol KL, Nordin J, Mullooly J, et al. (2003) Influenza vaccination and reduction in hospitalizations for cardiac disease and stroke among the elderly. N Engl J Med 348:1322–1332

    PubMed  Google Scholar 

  • Nikolaou K, Poon M, Sirol M, et al. (2003) Complementary results of computed tomography and magnetic resonance imaging of the heart and coronary arteries: a review and future outlook. Cardiol Clin 21:639–655

    Article  PubMed  Google Scholar 

  • Nilsson J, Kovanen PT (2004) Will autoantibodies help to determine severity and progression of atherosclerosis? Curr Opin Lipidol 15:499–503

    PubMed  Google Scholar 

  • Nissen SE, Tsunoda T, Tuzcu EM, et al. (2003) Effect of recombinant ApoA-I Milano on coronary atherosclerosis in patients with acute coronary syndromes: a randomized controlled trial. JAMA 290:2292–2300

    Article  PubMed  Google Scholar 

  • Nissen SE, Tuzcu EM, Schoenhagen P, et al. (2004) For the REVERSAL Investigators. Effect of intensive compared with moderate lipid-lowering therapy on progression of coronary atherosclerosis: a randomized controlled trial. JAMA 291:1071–1080

    Article  PubMed  Google Scholar 

  • Öörni K, Pentikäinen MO, Ala-Korpela M, Kovanen PT (2000) Aggregation, fusion, and vesicle formation of modified low density lipoprotein particles: molecular mechanisms and effects on matrix interactions. J Lipid Res 41:1703–1714

    PubMed  Google Scholar 

  • Pasceri V, Wu HD, Willerson JT, et al. (2000) Modulation of vascular inflammation in vitro and in vivo by peroxisome proliferator-activated receptor-gamma activators. Circulation 101:235–238

    PubMed  Google Scholar 

  • Pitt B, Pepine C, Willerson JT (2002) Cyclooxygenase-2 inhibition and cardiovascular events. Circulation 106:167–169

    PubMed  Google Scholar 

  • Prasad A, Zhu J, Halcox JP, et al. (2002) Predisposition to atherosclerosis by infections: role of endothelial dysfunction. Circulation 106:184–190

    Article  PubMed  Google Scholar 

  • Puddu P, Puddu GM, Muscari A (2003) Peroxisome proliferator-activated receptors: are they involved in atherosclerosis progression? Int J Cardiol 90:133–140

    PubMed  Google Scholar 

  • Rajagopalan S, Meng XP, Ramasamy S (1996) Reactive oxygen species produced by macrophage-derived foam cells regulate the activity of vascular matrix metalloproteinases in vitro. Implications for atherosclerotic plaque stability. J Clin Invest 98:2572–2579

    PubMed  Google Scholar 

  • Richardson PD, Davies MJ, Born GV (1989) Influence of plaque configuration and stress distribution on fissuring of coronary atherosclerotic plaques. Lancet 2:941–944

    Article  PubMed  Google Scholar 

  • Rodgers A (2003) A cure for cardiovascular disease? Combination treatment has enormous potential, especially in developing countries. BMJ 326:1407–1408

    Article  PubMed  Google Scholar 

  • Ross R (1999) Atherosclerosis is an inflammatory disease. Am Heart J 138:S419–S420

    PubMed  Google Scholar 

  • Sakata Y, Komamura K, Hirayama A, et al. (1996) Elevation of the plasma histamine concentration in the coronary circulation in patients with variant angina. Am J Cardiol 77:1121–1126

    Article  PubMed  Google Scholar 

  • Sata M, Saiura A, Kunisato A, et al. (2002) Hematopoietic stem cells differentiate into vascular cells that participate in the pathogenesis of atherosclerosis. Nat Med 8:403–409

    Article  PubMed  Google Scholar 

  • Satoh N, Ogawa Y, Usui T, et al. (2003) Antiatherogenic effect of pioglitazone in type 2 diabetic patients irrespective of the responsiveness to its antidiabetic effect. Diabetes Care 26:2493–2499

    PubMed  Google Scholar 

  • Schaar JA, Muller JE, Falk E (2004a) Terminology for high-risk and vulnerable coronary artery plaques. Eur Heart J 25:1077–1082

    Article  PubMed  Google Scholar 

  • Schaar JA, Regar E, Saia F, et al. (2004b) Diagnosing the vulnerable plaque in the cardiac catheterization laboratory. In: Waksman R, Serruys PW (eds) Handbook of the vulnerable plaque. Taylor & Francis Group, London, pp 81–95

    Google Scholar 

  • Schieffer B, Schieffer E, Hilfiker-Kleiner D, et al. (2000) Expression of angiotensin II and interleukin 6 in human coronary atherosclerotic plaques: potential implications for inflammation and plaque instability. Circulation 101:1372–1378

    PubMed  Google Scholar 

  • Schoenhagen P, Ziada KM, Kapadia SR, et al. (2000) Extent and direction of arterial remodeling in stable versus unstable coronary syndromes: an intravascular ultrasound study. Circulation 101:598–603

    PubMed  Google Scholar 

  • Schonbeck U, Sukhova GK, Graber, et al. (1999) Augmented expression of cyclooxygenase-2 in human atherosclerotic lesions. Am J Pathol 155:1281–1291

    PubMed  Google Scholar 

  • Schroeder AP, Falk E (1995) Vulnerable and dangerous coronary plaques. Atherosclerosis 118Suppl:S141–S149

    PubMed  Google Scholar 

  • Schwartz GG, Olsson AG, Ezekowitz MD, et al. (2001) Myocardial Ischemia Reduction with Aggressive Cholesterol Lowering (MIRACL) Study Investigators. Effects of atorvastatin on early recurrent ischemic events in acute coronary syndromes: the MIRACL study: a randomized controlled trial. JAMA 285:1711–1718

    PubMed  Google Scholar 

  • Sharma N, Andrews TC (2000) Endothelial function as a therapeutic target in coronary artery disease. Curr Atheroscler Rep 2:303–307

    PubMed  Google Scholar 

  • Sidhu JS, Kaposzta Z, Markus HS, et al. (2004) Effect of rosiglitazone on common carotid intima-media thickness progression in coronary artery disease patients without diabetes mellitus. Arterioscler Thromb Vasc Biol 24:930–934

    Article  PubMed  Google Scholar 

  • Simons FE, Simons KJ (2002) Clinical pharmacology of H1-antihistamines. Clin Allergy Immunol 17:141–178

    PubMed  Google Scholar 

  • Sinisalo J, Mattila K, Valtonen V, et al. (2002) Clarithromycin in Acute Coronary Syndrome Patients in Finland (CLARIFY) Study Group. Effect of 3 months of antimicrobial treatment with clarithromycin in acute non-q-wave coronary syndrome. Circulation 105:1555–1560

    Article  PubMed  Google Scholar 

  • Steinberg D, Witztum JL (2002) Is the oxidative modification hypothesis relevant to human atherosclerosis? Do the antioxidant trials conducted to date refute the hypothesis? Circulation 105:2107–2111

    Article  PubMed  Google Scholar 

  • Szmitko PE, Fedak PW, Weisel RD, et al. (2003) Endothelial progenitor cells: new hope for a broken heart. Circulation 107:3093–3100

    Article  PubMed  Google Scholar 

  • Tendera M, Wojakowski W (2003) Role of antiplatelet drugs in the prevention of cardiovascular events. Thromb Res 110:355–359

    Article  PubMed  Google Scholar 

  • The Clopidogrel in Unstable Angina to Prevent Recurrent Events Trial Investigators (2001) Effects of clopidogrel in addition to aspirin in patients with acute coronary syndromes without ST-segment elevation. N Engl J Med 345:494–502

    Google Scholar 

  • Tremaine WJ, Brzezinski A, Katz JA, et al. (2002) Treatment of mildly to moderately active ulcerative colitis with a tryptase inhibitor (APC 2059): an open-label pilot study. Aliment Pharmacol Ther 16:407–413

    Article  PubMed  Google Scholar 

  • Tricot O, Mallat Z, Heymes C, et al. (2000) Relation between endothelial cell apoptosis and blood flow direction in human atherosclerotic plaques. Circulation 101:2450–2453

    PubMed  Google Scholar 

  • Tunstall-Pedoe H, Kuulasmaa K, Mähönen M, et al. (1999)Contribution of trends in survival and coronary-event rates to changes in coronary heart disease mortality: 10-year results from 37 WHO MONICA project populations. Monitoring trends and determinants in cardiovascular disease. Lancet 353:1547–1557

    Article  PubMed  Google Scholar 

  • Urbich C, Dimmeler S (2004) Endothelial progenitor cells: characterization and role in vascular biology. Circ Res 95:343–353

    Article  PubMed  Google Scholar 

  • van der Wal AC, Becker AE, van der Loos CM, et al. (1994) Site of intimal rupture or erosion of thrombosed coronary atherosclerotic plaques is characterized by an inflammatory process irrespective of the dominant plaque morphology. Circulation 89:36–44

    PubMed  Google Scholar 

  • Vasa M, Fichtlscherer S, Aicher A, et al. (2001) Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ Res 89:E1–E7

    PubMed  Google Scholar 

  • Verges B (2004) Clinical interest of PPARs ligands. Diabetes Metab 30:7–12

    PubMed  Google Scholar 

  • Virmani R, Kolodgie FD, Burke AP, et al. (2000) Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol 20:1262–1275

    PubMed  Google Scholar 

  • Virmani R, Burke AP, Farb A, et al. (2004) Pathology of the vulnerable plaque. In: Waksman R, Serruys PW (eds) Handbook of the vulnerable plaque. Taylor & Francis Group, London, pp 33–48

    Google Scholar 

  • von Birgelen C, Klinkhart W, Mintz GS, et al. (2001) Plaque distribution and vascular remodeling of ruptured and nonruptured coronary plaques in the same vessel: an intravascular ultrasound study in vivo. J Am Coll Cardiol 37:1864–1870

    Article  PubMed  Google Scholar 

  • Wells BJ, Mainous AG 3rd, Dickerson LM (2004) Antibiotics for the secondary prevention of ischemic heart disease: a meta-analysis of randomized controlled trials. Arch Intern Med 164:2156–2161

    Article  PubMed  Google Scholar 

  • Wick G, Knoflach M, Xu Q (2004) Autoimmune and inflammatory mechanisms in atherosclerosis. Annu Rev Immunol 22:361–403

    Article  PubMed  Google Scholar 

  • World Health Organization (2002) Secondary prevention of non-communicable disease in low and middle income countries through community-based and health service interventions. Geneva: WHO

    Google Scholar 

  • Yusuf S, Sleight P, Pogue J, et al. (2000) Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. The Heart Outcomes Prevention Evaluation Study Investigators. N Engl J Med 342:145–153

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kovanen, P., Mäyränpää, M., Lindstedt, K. (2005). Drug Therapies to Prevent Coronary Plaque Rupture and Erosion: Present and Future. In: von Eckardstein, A. (eds) Atherosclerosis: Diet and Drugs. Handbook of Experimental Pharmacology, vol 170. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27661-0_28

Download citation

Publish with us

Policies and ethics