Skip to main content

Pharmacological Heart Failure Therapy in Children: Focus on Inotropic Support

  • Chapter
  • First Online:
Pediatric Pharmacotherapy

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 261))

Abstract

Pediatric heart failure is a clinical syndrome, which needs to be distinctly defined and the pathophysiological consequences considered. Pharmacological treatment depends on the disease- and age-specific myocardial characteristics. Acute and chronic low cardiac output is the result of an inadequate heart rate (rhythm), myocardial contractility, preload and afterload, and also ventriculo-ventricular interaction, synchrony, atrio-ventricular and ventricular-arterial coupling. The treatment of choice is curing the cause of heart failure, if possible.

Acute HF therapy is still based to the use of catecholamines and inodilators. The cornerstone of chronic HF treatment consists of blocking the endogenous, neuro-humoral axis, in particular the adrenergic and renin-angiotensin-aldosterone system.

Before neprilysin inhibitors are used in young children, their potential side-effect for inducing Alzheimer disease needs to be clarified. The focus of the current review is put on the differential use of the inotropic drugs as epinephrine, norepinephrine, dopamine and dobutamine, and also the inodilators milrinone and levosimendan. Considering effects and side-effects of any cardiac stimulating treatment strategy, co-medication with ß-blockers, angiotensin converting inhibitors (ACEIs), angiotensin blockers (ARBs) and mineralocorticoid receptor antagonists (MRAs) is not a contradiction, but a senseful measure, even still during the acute inotropic treatment.

Missing sophisticated clinical trials using accurate entry criteria and clinically relevant endpoints, there is especially in cardiovascular diagnosis and treatment of young children a compromise of evidence-based versus pathophysiology-based procedures. But based on the pharmacological and pathophysiological knowledge a hypothesis-driven individualized treatment is already currently possible and therefore indicated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen-Webb EM, Ross MP, Pappas JB, McGough EC, Banner W Jr (1994) Age-related amrinone pharmacokinetics in a pediatric population. Crit Care Med 22(6):1016–1024

    CAS  PubMed  Google Scholar 

  • Angadi U, Westrope C, Chowdhry MF (2013) Is levosimendan effective in pediatric heart failure and post-cardiac surgeries? Interact Cardiovasc Thorac Surg 17:710e4

    Google Scholar 

  • Atlas SA (2007) The renin-angiotensin aldosterone system: pathophysiological role and pharmacologic inhibition. J Manag Care Pharm 13:9–20

    PubMed  Google Scholar 

  • Barber CA, Wyckoff MH (2006) Use and efficacy of endotracheal versus intravenous epinephrine during neonatal cardiopulmonary resuscitation in the delivery room. Pediatrics 118:1028–1034

    PubMed  Google Scholar 

  • Barrington KJ, Finer NN, Chan W (1995) A blind, randomized comparison of the circulatory effects of dopamine and epinephrine infusions in the newborn piglet during normoxia and hypoxia. Crit Care Med 23:740–748

    CAS  PubMed  Google Scholar 

  • Barton P, Garcia J, Kouatli A, Kitchen L, Zorka A, Lindsay C, Lawless S, Giroir B (1996) Hemodynamic effects of i.v. milrinone lactate in pediatric patients with septic shock. A prospective, double-blinded, randomized, placebo-controlled, interventional study. Chest 109(5):1302–1312

    CAS  PubMed  Google Scholar 

  • Bernstein D, Fajardo G, Zhao M (2011) The role of β-adrenergic Receptors in heart failure: differential regulation of cardiotoxicity and cardioprotection. Prog Pediatr Cardiol 31(1):35–38

    PubMed  PubMed Central  Google Scholar 

  • Borg TK, Rubin K, Lundgren E, Borg K, Obrink B (1984) Recognition of extracellular matrix components by neonatal and adult cardiac myocytes. Dev Biol 104(1):86–96

    CAS  PubMed  Google Scholar 

  • Braunwald E (2013) Heart failure. JACC Heart Fail 1:1–20

    PubMed  Google Scholar 

  • Bristow MR (1989) Mol Pharmacol 35:295–303

    CAS  PubMed  Google Scholar 

  • Brodde O-E (1991) ß1and ß2-adrenoceptors in the human heart: properties, function, and alterations in chronic heart failure. Pharmacol Rev 43:203–242

    CAS  PubMed  Google Scholar 

  • Brodde OE, Zerkowski HR, Schranz D et al (1995) Age-dependent changes in the beta-adrenoceptor–G protein(s)–adenylyl cyclase system in human right atrium. J Cardiovasc Pharmacol 26:20–26

    CAS  PubMed  Google Scholar 

  • Burkhardt BE, Rucker G, Stiller B (2015) Prophylactic milrinone for the prevention of low cardiac output syndrome and mortality in children undergoing surgery for congenital heart disease. Cochrane Database Syst Rev (3):CD009515. Circ Heart Fail 2015; 8(1): 57–63

    Google Scholar 

  • Clutter WE, Bier DM, Shah SD, Cryer PE (1980) Epinephrine plasma metabolic clearance rates and physiologic thresholds for metabolic and hemodynamic actions in man. J Clin Invest 66:94

    CAS  PubMed  PubMed Central  Google Scholar 

  • Collucci WS (1998) The effects of norepinephrine on myocardial biology:Implications fort he therapy of heart failure. Clin Cardiol 21(Suppl 1):20–24

    Google Scholar 

  • Curley M, Liebers J, Maynard R (2017) Continuous intravenous milrinone therapy in pediatric outpatients. J Infus Nurs 40(2):92–96

    PubMed  PubMed Central  Google Scholar 

  • Dage RC, Kariya T, Hsieh CP, Roebel LE, Cheng HC, Schnettler RA, Grisar JM (1987) Pharmacology of enoximone. Am J Cardiol 60(5):10C–14C

    CAS  PubMed  Google Scholar 

  • Dempsey EM, Barrington KJ (2007) Treating hypotension in the preterm infant: when and with what: a critical and systematic review. J Perinatol 27:469–478

    CAS  PubMed  Google Scholar 

  • Digitalis Investigation Group (1997) The effect of digoxin on mortality and morbidity in patients with heart failure. N Engl J Med 336:525–533

    Google Scholar 

  • Digitalis Investigation Group (DIG) (1997) The effect of digoxin in mortality and morbidity in patients with heart failure. N Engl J Med 306:525–533

    Google Scholar 

  • Driscoll DJ, Gillette PC, Duff DF, Nihill MR, Gutgesell HP, Vargo TA, Mullins CE, McNamara DG (1979) Hemodynamic effects of dobutamine in children. Am J Cardiol 43(3):581–585

    CAS  PubMed  Google Scholar 

  • El-Amouri SS, Zhu H, Yu J, Marr R, Verma IM (2008) Kindy MS neprilysin: an enzyme candidate to slow the progression of Alzheimer’s disease. Am J Pathol 172:1342–1354

    CAS  PubMed  PubMed Central  Google Scholar 

  • Emorine LJ, Marullo S, Briend-Sutren MM, Patey G, Tate K, Delavier-Klutchko C, Strosberg AD (1989) Molecular characterization of the human beta 3-adrenergic receptor. Science 245(4922):1118–1121

    CAS  PubMed  Google Scholar 

  • Engle MA, Lewy JE, Lewy PR, Metcoff J (1978) The use of furosemide in the treatment of edema in infants and children. Pediatrics 62:811–818

    CAS  PubMed  Google Scholar 

  • Ergenekon E, Rojas-Anaya H, Bravo MC, Kotidis C, Mahoney L, Rabe H (2017) Cardiovascular drug therapy for human newborn: review of pharmacodynamic data. Curr Pharm Des 23(38):5850–5860

    CAS  PubMed  Google Scholar 

  • Farris W, Schutz SG, Cirrito JR, Shankar GM, Sun X, George A, Leissring MA, Walsh DM, Qiu WQ, Holtzman DM, Selkoe DJ (2007) Loss of neprilysin function promotes amyloid plaque formation and causes cerebral amyloid angiopathy. Am J Pathol 171:241–251

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrer-Barba A, Gonzalez-Rivera I, Bautista-Hernandez V (2016) Inodilators in the management of low cardiac output syndrome after pediatric cardiac surgery. Curr Vasc Pharmacol 14(1):48–57

    CAS  PubMed  Google Scholar 

  • Frobel A-K, Hulpke-Wette M, Schmidt KG, Läer S (2009) Beta-blockers for congestive heart failure in children. In: Cochrane database of systematic reviews [Internet]. Wiley, New York. http://onlinelibrary.wiley.com. https://doi.org/10.1002/14651858.CD007037.pub2/abstract

  • Furchgott RF (1959) The receptors for epinephrine and norepinephrine (adrenergic receptors). Pharmacol Rev 11:429–441

    CAS  PubMed  Google Scholar 

  • Han C, Abel PW, Minneman KP (1987) Alpha1Adrenoceptor subtypes linked to different mechanisms for increasing intracellular Ca2+ in smooth muscle. Nature 329:333–335

    CAS  PubMed  Google Scholar 

  • Hoffman TM, Wernovsky G, Atz AM et al (2003) Efficacy and safety of milrinone in preventing low cardiac output syndrome in infants and children after corrective surgery for congenital heart disease. Circulation 107(7):996–1002

    CAS  PubMed  Google Scholar 

  • Hussey AD, Weintraub RG (2016) Drug treatment of heart failure in children: focus on recent recommendations from the ISHLT guidelines for the management of pediatric heart failure. Paediatr Drugs 18:89e99

    Google Scholar 

  • Jonker SS, Zhang L, Louey S, Giraud GD, Thornburg KL, Faber JJ (1985) Myocyte enlargement, differentiation, and proliferation kinetics in the fetal sheep heart. J Appl Physiol 102:1130–1142

    Google Scholar 

  • Kantor PF, Lougheed J, Dancea A, McGillion M, Barbosa N, Chan C et al (2013) Presentation, diagnosis, and medical management of heart failure in children: Canadian Cardiovascular Society guidelines. Can J Cardiol 29(12):1535–1552

    PubMed  Google Scholar 

  • Kirk R, Dipchand AI, Rosenthal DN, Addonizio L, Burch M, Chrisant M, Dubin A, Everitt M, Gajarski R, Mertens L et al (2014) The international society of heart and lung transplantation guidelines for the management of pediatric heart failure: executive summary. J Heart Lung Transplant 33:888–909

    PubMed  Google Scholar 

  • Kreidberg MB, Chernoff HL, Lopez WL (1963) Treatment of cardiac failure in infancy and childhood. N Engl J Med 268:23–30

    CAS  PubMed  Google Scholar 

  • Lakatta EG (1993) β1-adrenoceptor stimulation and β2-adrenoceptor stimulation differ in their effects on contraction, cytosolic Ca2+, and Ca2+ current in single rat ventricular cells. Circ Res 73:286–300

    PubMed  Google Scholar 

  • Lefkowitz RJ, Caron MG (1985) Adrenergic-receptors: molecular mechanisms of clinically relevant regulation. Clin Res 33:395–406

    CAS  PubMed  Google Scholar 

  • Li F, Wang X, Capasso JM, Gerdes AM (1996) Rapid transition of cardiac myocytes from hyperplasia to hypertrophy during postnatal development. J Mol Cell Cardiol 28:1737–1746

    CAS  Google Scholar 

  • Liet JM, Boscher C, Gras-Leguen C, Gournay V, Debillon T, Rozé JC (2002) Dopamine effects on pulmonary artery pressure in hypotensive preterm infants with patent ductus arteriosus. J Pediatr 140:373–375

    CAS  PubMed  Google Scholar 

  • Lokhandwala MF, Barrett RJ (1982) Cardiovascular dopamine receptors: physiological, pharmacological and therapeutic implications. J Auton Pharmacol 2(3):189–215

    CAS  PubMed  Google Scholar 

  • Louch WE, Koivumäki JT, Tavi P (2015) Calcium signaling in developing cardiomyocytes: implications for model systems and disease. J Physiol 593(5):1047–1063

    CAS  PubMed  PubMed Central  Google Scholar 

  • Masarone D, Valente F, Rubino M, Vastarella R, Gravino R, Rea A, Russo MG, Pacileo G, Limongelli G (2017) Pediatric heart failure: a practical guide to diagnosis and management. Pediatr Neonatol 58(4):303–312

    PubMed  Google Scholar 

  • Masutani S, Saiki H, Kurishima C, Ishido H, Tamura M, Senzaki H (2013) Heart failure with preserved ejection fraction in children. Hormonal imbalance between aldosterone and brain natriuretic peptide. Circ J 77:2375–2382

    PubMed  Google Scholar 

  • McMurray JJ, Packer M, Desai AS et al (2014) Angiotensin-neprilysin inhibition versus enalapril in heart failure. N Engl J Med 371:993–1004

    PubMed  Google Scholar 

  • Miyamoto SD, Stauffer BL, Nakano S, Sobus R, Nunley K, Nelson P et al (2014) Beta-adrenergic adaptation in pediatric idiopathic dilated cardiomyopathy. Eur Heart J 35(1):33–41

    CAS  PubMed  Google Scholar 

  • Mollovaa M, Bersella K, Walsha S, Savlaa S, Tanmoy Dasa L, Park S-Y, Silbersteine SL, dos Remediosg DG, Grahama D, Colana D, Kühn B (2013) Cardiomyocyte proliferation contributes to heart growth in young humans. Proc Natl Acad Sci U S A 110:1446–1451

    Google Scholar 

  • Mullett CJ, Kong JQ, Romano JT, Polak MJ (1992) Age-related changes in pulmonary venous epinephrine concentration, and pulmonary vascular response after intratracheal epinephrine. Pediatr Res 31:458–461

    CAS  PubMed  Google Scholar 

  • Nakano SJ, Miyamoto SD, Movsesian M, Nelson P, Stauffer BL, Sucharov CC (2015) Age-related differences in phosphodiesterase activity and effects of chronic phosphodiesterase inhibition in idiopathic dilated cardiomyopathy. Circ Heart Fail 8(1):57–63

    CAS  PubMed  Google Scholar 

  • Nakano SJ, Sucharov J, van Dusen R, Cecil M, Nunley K, Wickers S, Karimpur-Fard A, Stauffer BL, Miyamoto SD, Sucharov CC (2017) Cardiac adenylyl cyclase and phosphodiesterase expression profiles vary by age, disease, and chronic phosphodiesterase inhibitor treatment. J Card Fail 23(1):72–80

    CAS  PubMed  Google Scholar 

  • Narula J, Haider N, Virmani R, DiSalvo TG, Kolodgie FD, Hajjar RJ, Schmidt U, Semigran MJ, Dec GW, Khaw BA (1996) Apoptosis in myocytes in end-stage heart failure. N Engl J Med 335(16):1182–1189

    CAS  PubMed  Google Scholar 

  • Navaratnarajah M, Siedlecka U, Ibrahim M, van Doorn C, Soppa G, Gandhi A et al (2014) Impact of combined clenbuterol and metoprolol therapy on reverse remodelling during mechanical unloading. PLoS One 9(9):e92909

    PubMed  PubMed Central  Google Scholar 

  • Noori S, Seri I (2012) Neonatal blood pressure support: the use of inotropes, luisitropes, and other vasopressor agents. Clin Perinatol 39:221–238

    PubMed  Google Scholar 

  • Noori S, Seri I (2015) Evidence-based versus pathophysiology-based approach to diagnosis and treatment of neonatal cardiovascular compromise. Semin Fetal Neonatal Med 20(4):238–245

    PubMed  Google Scholar 

  • Noori S, Freidlich P, Seri I (2003) Developmentally regulated cardiovascular, renal and neuroendocrine effects of dopamine. NeoReviews 4:e283–e288. https://doi.org/10.1542/neo.4-10-e283

    Article  Google Scholar 

  • Norris RA, Borg TK, Butcher JT, Baudino TA, Banerjee I, Markwald RR (2008) Neonatal and adult cardiovascular pathophysiological remodeling and repair: developmental role of periostin. Ann N Y Acad Sci 1123:30–40

    CAS  PubMed  Google Scholar 

  • Oster ME, Kelleman M, McCracken C, Ohye RG, Mahle WT (2016) Association of digoxin with interstage mortality: results from the pediatric heart network single ventricle reconstruction trial public use dataset. J Am Heart Assoc 5(1):e002566

    PubMed  PubMed Central  Google Scholar 

  • Padbury JF, Agata Y, Baylen BG, Ludlow JK, Polk DH, Goldblatt E et al (1987) Dopamine pharmacokinetics in critically ill newborninfants. J Pediatr 110:293–298

    CAS  PubMed  Google Scholar 

  • Pasquali Sara K, Matthew H, Slonim Anthony D, Jenkins Kathy J, Marino Bradley S, Cohen Meryl S et al (2008) Off-label use of cardiovascular medications in children hospitalized with congenital and acquired heart disease. Circ Cardiovasc Qual Outcomes 1(2):74–83

    CAS  PubMed  Google Scholar 

  • Pitt B, Zannad F, Remme WJ, Cody R, Castaigne A, Perez A, Palensky J, Wittes J (1999) The effect of spironolactone on morbidity and mortality in patients with severe heart failure. N Engl J Med 341:709–717

    CAS  PubMed  Google Scholar 

  • Ratnapalan S, Griffiths K, Costei AM, Benson L, Koren G (2003) Digoxin-carvedilol interactions in children. J Pediatr 142:572–574

    CAS  PubMed  Google Scholar 

  • Recla S, Steinbrenner B, Schranz D (2013) Medical therapy in dilated cardiomyopathy and pulmonary arterial banding in children. J Heart Lung Transplant 32(10):1045–1046

    PubMed  Google Scholar 

  • Rodriguez W, Selen A, Avant D, Chaurasia C, Crescenzi T, Gieser G et al (2008) Improving pediatric dosing through pediatric initiatives: what we have learned. Pediatrics 121(3):530–539

    PubMed  Google Scholar 

  • Roeleveld PP, de Klerk JCA (2018) The Perspective of the intensivist on inotropes and postoperative care following pediatric heart surgery: an international survey and systematic review of the literature. World J Pediatr Congenit Heart Surg 9(1):10–21

    Google Scholar 

  • Rognoni A, Lupi A, Lazzero M, Bongo AS, Rognoni G (2011) Levosimendan: from basic science to clinical trials. Recent Pat Cardiovasc Drug Discov 6:9e15

    Google Scholar 

  • Ross RD, Daniels SR, Schwartz DC, Hannon DW, Shukla R, Kaplan S (1987) Plasma norepinephrine levels in infants and children with congestive heart failure. Am J Cardiol 59:911–914

    CAS  PubMed  Google Scholar 

  • Rossano JW, Shaddy RE (2014) Update on pharmacological heart failure therapies in children: do adult medications work in children and if not, why not? Circulation 129:607–612

    PubMed  Google Scholar 

  • Schindler MB, Hislop AA, Haworth SG (2004) Postnatal changes in response to norepinephrine in the normal and pulmonary hypertensive lung. Am J Respir Crit Care Med 170(6):641–646

    PubMed  Google Scholar 

  • Schranz D (1993) Kardiovaskuläre Erkrankungen. In: Pädiatrische Intensivmedizin. 2. Auflage Gustav Fischer Verlag Stuttgart Jena

    Google Scholar 

  • Schranz D, Voelkel NF (2016) “Nihilism” of chronic heart failure therapy in children and why effective therapy is withheld. Eur J Pediatr 175:445–455

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schranz D, Stopfkuchen H, Jüngst BK, Clemens R, Emmrich P (1982) Hemodynamic effects of dobutamine in children with cardiovascular failure. Eur J Pediatr 139(1):4–7

    CAS  PubMed  Google Scholar 

  • Schranz D, Huth R, Dahm M, Iversen S, Hein E, Stopfkuchen H, Jüngst BK (1989) Acute hemodynamic response to intravenous enoximone: an animal study and preliminary report in infants after cardiac surgery. J Cardiovasc Pharmacol 14(Suppl 1):S62–S68

    PubMed  Google Scholar 

  • Schranz D, Droege A, Broede A, Brodermann G, Schafer E, Oelert H, Brodde OE (1993) Uncoupling of human cardiac adrenoceptors during cardiopulmonary bypass with cardioplegic cardiac arrest. Circulation 87:422–426

    CAS  PubMed  Google Scholar 

  • Schranz D, Rupp S, Müller M, Schmidt D, Bauer A, Valeske K et al (2013) Pulmonary artery banding in infants and young children with left ventricular dilated cardiomyopathy: a novel therapeutic strategy before heart transplantation. J Heart Lung Transplant 32(5):475–481

    PubMed  Google Scholar 

  • Schranz D, Akintuerk H, Bailey L (2018) Pulmonary artery banding for functional regeneration of end-stage dilated cardiomyopathy in young children: world network report. Circulation 137(13):1410–1412

    PubMed  Google Scholar 

  • Seguchi M, Nakazawa M, Momma K (1999) Further evidence suggesting a limited role of digitalis in infants with circulatory congestion secondary to large ventricular septal defect. Am J Cardiol 83:1408–1411

    CAS  PubMed  Google Scholar 

  • Seri I (1995) Cardiovascular, renal, and endocrine actions of dopamine in neonates and children. J Pediatr 126:333–344

    CAS  PubMed  Google Scholar 

  • Seri I, Rudas G, Bors Z, Kanyicksa B, Tulassay T (1993) Effects of low dose dopamine infusions in cardiovascular and renal functions, cerebral blood flow and plasma catecholamine levels in sick preterm neonates. Pediatr Res 34:742–749

    CAS  PubMed  Google Scholar 

  • Shaddy RE, Boucek MM, Hsu DT et al (2007) Carvedilol for children and adolescents with heart failure: a randomized controlled trial. JAMA 298(117):1–9

    Google Scholar 

  • Shavit G, Sagy M, Nadler E, Vidne BA, Gitter S (1989) Myocardial response to alpha-agonist (phenylephrine) in relation to age. Crit Care Med 17(12):1324–1327

    CAS  PubMed  Google Scholar 

  • Sonnenblick EH, Frishman WH, LeJemtel TH (1979) Dobutamine: a new synthetic cardioactive sympathetic amine. N Engl J Med 300(1):17–22

    CAS  PubMed  Google Scholar 

  • Sperelakis N, Pappano AJ (1983) Physiology and pharmacology of developing heart cells. Pharmacol Ther 22:1–39

    CAS  PubMed  Google Scholar 

  • Teitel DF, Cassidy SC, Fineman JR (2008) Circulation physiology. In: Moss AJ, Allen HD (eds) Moss and Adams’ heart disease in infants, children, and adolescents: including the fetus and young adult. Wolters Kluwer Health/Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Towbin JA, Lowe AM, Colan SD et al (2006) Incidence, causes, and outcomes of dilated cardiomyopathy in children. JAMA 296:1867–1876

    CAS  PubMed  Google Scholar 

  • Veldman A, Rupp S, Schranz D (2006) New inotropic pharmacologic strategies targeting the failing myocardium in the newborn and infant. Mini Rev Med Chem 6(7):785–792

    CAS  PubMed  Google Scholar 

  • Vlahakes GJ, Turley K, Hoffman JI (1981) The pathophysiology of failure in acute right ventricular hypertension: hemodynamic and biochemical correlations. Circulation 63(1):87–95

    CAS  PubMed  Google Scholar 

  • Wyckoff MH, Aziz K, Escobedo MB, Kapadia VS, Kattwinkel J, Perlman JM, Simon WM, Weiner GM, Zaichkin JG (2015) Part 13: neonatal resuscitation: 2015 American heart association guidelines update for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation (132):S543–S560

    Google Scholar 

  • Xiao R-P, Zhu W, Zheng M, Chakir K, Bond R, Lakatta EG et al (2004) Subtype-specific β-adrenoceptor signaling pathways in the heart and their potential clinical implications. Trends Pharmacol Sci 25(7):358–365

    CAS  PubMed  Google Scholar 

  • Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE, Colvin MM et al (2017) 2017 ACC/AHA/HFSA focused update of the 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. J Am Coll Cardiol 28:236

    Google Scholar 

  • Yasojima K, McGeer EG, McGeer PL (2001) Relationship between beta amyloid peptide generating molecules and neprilysin in Alzheimer disease and normal brain. Brain Res 919:115–121

    CAS  PubMed  Google Scholar 

  • Young MA, Vatner DE, Vatner SF (1990) Alpha- and beta-adrenergic control of large coronary arteries in conscious calves. Basic Res Cardiol (85 Suppl 1):97–109

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dietmar Schranz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schranz, D. (2019). Pharmacological Heart Failure Therapy in Children: Focus on Inotropic Support. In: Kiess, W., Schwab, M., van den Anker, J. (eds) Pediatric Pharmacotherapy . Handbook of Experimental Pharmacology, vol 261. Springer, Cham. https://doi.org/10.1007/164_2019_267

Download citation

Publish with us

Policies and ethics