Skip to main content

Part of the book series: International Association of Geodesy Symposia ((IAG SYMPOSIA,volume 147))

Abstract

The absolute measurement of g is currently realized through the laser interferometric measurement of a free falling retro-reflector. The Micro-g LaCoste FG5X is a free-fall gravimeter with a laser interferometer in Mach-Zehnder configuration which uses simultaneous time and distance measurements to calculate the absolute value of g. Because the instrument itself contains the necessary working standards for precise time and length measurements, it is considered independent of external references. The timing is kept with a 10 MHz rubidium oscillator with a stability of \(5 \times 10^{-10}\). The length unit is realized by the laser interferometer. The frequency calibrated and iodine stabilized helium-neon laser has a wavelength of 633 nm and an accuracy of \(2.5 \times 10^{-11}\).

In 2012 the FG5-220 of the Institut für Erdmessung (IfE) was upgraded to the FG5X-220. The upgrade included a new dropping chamber with a longer free fall and new electronics including a new rubidium oscillator. The metrological traceability to measurement units of the Système International d’unités (SI unit) is ensured by two complementary and successive approaches: the comparison of frequencies with standards of higher order and the comparison of the measured g to a reference measured by absolute gravimeters defined as primary standards within the SI. A number of experiments to test the rubidium oscillator were performed. The oscillator showed a linear drift of \(0.2 \times 10^{-3}\,\mathrm{Hz}\) per month (= \(0.3\,\mathrm{nm}\,\mathrm{s}^{-2}\) per month) in the first 18 months of use. A jump in the frequency of 0.01 Hz (= \(20\,\mathrm{nm}\,\mathrm{s}^{-2}\)) was revealed recently and the drift rate changed to \(-0.4 \times 10^{-3}\,\mathrm{Hz}\)/month.

Since the upgrade of the absolute gravimeter the instrument participated in several international comparisons, which showed no significant measuring offset between the instrument prior and after the upgrade.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This is the reference height above floor level in which the vertical gravity gradient does not affect the derived g-result.

  2. 2.

    The FG5-220 featured a Datum LPRO rubidium oscillator and the FG5X-220 a Microsemi (formerly Symmetricon) SA.22c rubidium oscillator. Both oscillators are comparable in stability and drift to the original Efratom FRK-L.

  3. 3.

    Meinberg GPS-receiver Rubidium Portable (GRP) frequency reference.

  4. 4.

    FG5(X)-220 refers to the original FG5-220 and the upgraded version.

  5. 5.

    Comité International des Poids et Mesures Mutual Recognition Arrangement, a framework ensuring the comparability of national metrology services.

  6. 6.

    http://kcdb.bipm.org.

References

  • Chartier JM, Labot J, Sasagawa G, Niebauer TM, Hollander W (1993) A portable iodine stabilized He-Ne laser and its use in an absolute gravimeter. IEEE Trans Instrum Meas 42(2):420–422. doi:10.1109/19.278595

    Article  Google Scholar 

  • Cox MG (2002) The evaluation of key comparison data. Metrologia 39(6):589–595. doi:10.1088/0026-1394/39/6/10

    Article  Google Scholar 

  • Creutzfeldt B, Ferré T, Troch P, Merz B, Wziontek H, Güntner A (2012) Total water storage dynamics in response to climate variability and extremes: inference from long-term terrestrial gravity measurement. J Geophys Res 117:D08112. doi:10.1029/2011jd016472

    Article  Google Scholar 

  • Francis O, van Dam T, Amalvict M, Andrade de Sousa M, Bilker M, Billson R, D’Agostino G, Desogus S, Falk R, Germak A, Gitlein O, Jonhson D, Klopping F, Kostelecký J, Luck B, Mäkinen J, McLaughlin D, Nunez E, Origlia C, Pálinkáš V, Richard P, Rodriguez E, Ruess D, Schmerge D, Thies S, Timmen L, Van Camp M, van Westrum D, Wilmes H (2005) Results of the international comparison of absolute gravimeters in Walferdange (Luxembourg) of November 2003. In: Mertikas S (ed) International Association of Geodesy Symposia, vol 129, pp 272–275. Springer, Berlin/Heidelberg. doi:10.1007/3-540-26932-0_47

    Google Scholar 

  • Francis O, van Dam T, Germak A, Amalvict M, Bayer R, Bilker-Koivula M, Calvo M, D’Agostino GC, Dell’Acqua T, Engfeldt A, Faccia R, Falk R, Gitlein O, Gjevestad J, Hinderer J, Jones D, Kostelecký J, Le Moigne N, Luck B, Mäkinen J, Mclaughlin D, Olszak T, Olsson PA, Pachuta A, Pálinkáš V, Pettersen B, Pujol R, Prutkin I, Quagliotti D, Reudink R, Rothleitner C, Ruess D, Shen C, Smith V, Svitlov S, Timmen L, Ulrich C, Van Camp M, Walo J, Wang L, Wilmes H, Xing L (2010) Results of the European comparison of absolute gravimeters in Walferdange (Luxembourg) of November 2007. In: International Association of Geodesy Symposia, vol 137, pp 31–35. Springer, Berlin/Heidelberg. doi:10.1007/978-3-642-10634-7_5

    Google Scholar 

  • Francis O, Baumann H, Volarik T, Rothleitner C, Klein G, Seil M, Dando N, Tracey R, Ullrich C, Castelein S, Hua H, Kang W, Chongyang S, Songbo X, Hongbo T, Zhengyuan L, Pálinkáš V, Kostelecký J, Mäkinen J, Näränen J, Merlet S, Farah T, Guerlin C, Pereira Dos Santos F, Le Moigne N, Champollion C, Deville S, Timmen L, Falk R, Wilmes H, Iacovone D, Baccaro F, Germak A, Biolcati E, Krynski J, Sekowski M, Olszak T, Pachuta A, Ågren J, Engfeldt A, Reudink R, Inacio P, McLaughlin D, Shannon G, Eckl M, Wilkins T, van Westrum D, Billson R (2013) The European comparison of absolute gravimeters 2011 (ECAG-2011) in Walferdange, Luxembourg: results and recommendations. Metrologia 50(3):257–268. doi:10.1088/0026-1394/50/3/257

    Article  Google Scholar 

  • Francis O, Baumann H, Ullrich C, Castelein S, Van Camp M, Andrade de Sousa M, Melhorato RL, Li C, Xu J, Su D, Wu S, Hu H, Wu K, Li G, Li Z, Hsieh WC, Pálinkáš V, Kostelecký J, Mäkinen J, Näränen J, Merlet S, Pereira Dos Santos F, Gillot P, Hinderer J, Bernard JD, Le Moigne N, Fores B, Gitlein O, Schilling M, Falk R, Wilmes H, Germak A, Biolcati E, Origlia C, Iacovone D, Baccaro F, Mizushima S, De Plaen R, Klein G, Seil M, Radinovic R, Sekowski M, Dykowski P, Choi IM, Kim MS, Borreguero A, Sainz-Maza S, Calvo M, Engfeldt A, Ågren J, Reudink R, Eckl M, van Westrum D, Billson R, Ellis B (2015) CCM.G-K2 key comparison. Metrologia 52(1A):07009. doi:10.1088/0026-1394/52/1a/07009

    Google Scholar 

  • Gitlein O, Timmen L, Müller J, Denker H, Mäkinen J, Bilker-Koivula M, Pettersen BR, Lysaker DI, Gjevestad JGO, Breili K, Wilmes H, Falk R, Reinhold A, Hoppe W, Scherneck HG, Engen B, Omang OCD, Engfeldt A, Lilje M, Ågren J, Lidberg M, Strykowski G, Forsberg R (2008) Observing absolute gravity acceleration in the Fennoscandian land uplift area. In: Peshekhonov VG (ed) Terrestrial Gravimetry: Static and Mobile Measurements (TG-SMM2007) – 20.-23.8.2007, pp 175–180. State Research Center of Russia Elektropribor, St. Petersburg

    Google Scholar 

  • Jiang Z, Pálinkáš V, Arias FE, Liard J, Merlet S, Wilmes H, Vitushkin L, Robertsson L, Tisserand L, Pereira Dos Santos F, Bodart Q, Falk R, Baumann H, Mizushima S, Mäkinen J, Bilker-Koivula M, Lee C, Choi IM, Karaboce B, Ji W, Wu Q, Ruess D, Ullrich C, Kostelecký J, Schmerge D, Eckl M, Timmen L, Le Moigne N, Bayer R, Olszak T, Ågren J, Del Negro C, Greco F, Diament M, Deroussi S, Bonvalot S, Krynski J, Sekowski M, Hu H, Wang LJ, Svitlov S, Germak A, Francis O, Becker M, Inglis D, Robinson I (2012) The 8th international comparison of absolute gravimeters 2009: the first key comparison (CCM.G-K1) in the field of absolute gravimetry. Metrologia 49(6):666–684. doi:10.1088/0026-1394/49/6/666

  • Křen P, Pálinkáš V, Mašika P (2015) On the effect of distortion and dispersion in fringe signal of the FG5 absolute gravimeters. Metrologia 53(1):27–40. doi:10.1088/0026-1394/53/1/27

    Google Scholar 

  • Mäkinen J, Virtanen H, Bilker-Koivula M, Ruotsalainen H, Näränen J, Raja-Halli A (2015) The effect of helium emissions by a superconducting gravimeter on the rubidium frequency standards of absolute gravimeters. In: International Association of Geodesy Symposia. doi:10.1007/1345_2015_205

    Google Scholar 

  • Marti U, Richard P, Germak A, Vitushkin L, Pálinkáš V, Wilmes H (2015) CCM - IAG strategy for metrology in absolute gravimetry - Role of CCM and IAG. Available online. http://www.bipm.org/wg/AllowedDocuments.jsp?wg=CCM-WGG. Retrieved 10 Oct 2015

  • Niebauer TM, Sasagawa GS, Faller JE, Hilt R, Klopping F (1995) A new generation of absolute gravimeters. Metrologia 32(3):159–180. doi:10.1088/0026-1394/32/3/004

    Article  Google Scholar 

  • Niebauer TM, Billson R, Schiel A, van Westrum D, Klopping F (2013) The self-attraction correction for the FG5X absolute gravity meter. Metrologia 50(1):1–8. doi:10.1088/0026-1394/50/1/1

    Article  Google Scholar 

  • Quinn T (2003) Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2001). Metrologia 40(2):103–133. doi:10.1088/0026-1394/40/2/316

    Article  Google Scholar 

  • Riehle F (2004) Frequency standards. Wiley, Weinheim. doi:10.1002/3527605991

    Google Scholar 

  • Robertsson L (2007) On the diffraction correction in absolute gravimetry. Metrologia 44(1):35–39. doi:10.1088/0026-1394/44/1/005

    Article  Google Scholar 

  • Ruess D, Ullrich C (2011) 20 years of international comparison of absolute gravimeters (ICAG) at the Bureau International des Poids et Mesures (BIPM) in Paris with participation of the BEV. Vermessung Geoinf 99(2):154–161

    Google Scholar 

  • Steele AG, Douglas RJ (2006) Extending E n for measurement science. Metrologia 43(4):S235–S243. doi:10.1088/0026-1394/43/4/s10

    Article  Google Scholar 

  • Timmen L (2010) Absolute and relative gravimetry. In: Xu G (ed) Sciences of Geodesy - I: Advances and Future Directions, Chap 1, pp 1–48. Springer, Berlin/Heidelberg. doi:10.1007/978-3-642-11741-1_1

    Google Scholar 

  • Timmen L, Gitlein O, Klemann V, Wolf D (2011) Observing gravity change in the Fennoscandian uplift area with the Hanover absolute gravimeter. Pure Appl Geophys 169(8):1331–1342. doi:10.1007/s00024-011-0397-9

    Article  Google Scholar 

  • Timmen L, Engfeldt A, Scherneck HG (2015) Observed secular gravity trend at Onsala station with the FG5 gravimeter from Hannover. J Geodetic Sci 5(1):18–25. doi:10.1515/jogs-2015-0001

    Article  Google Scholar 

  • Torge W (1991) The present state of absolute gravimetry. In: Poitevin C (ed) Proceedings of the workshop: non tidal gravity changes – intercomparison between absolute and superconducting gravimeters, vol 3, pp 9–22. Centre Européen de Géodynamique et de Séismologie, Walferdange (Luxemburg), September 5th–9th 1990

    Google Scholar 

  • van Westrum D, Bianchi T, Billson R, Ellis B, Niebauer TM, Rohner H (2014) The effect of helium contamination on rubidium clock references in absolute gravity meters. In: Peshekhonov VG (ed) IAG Symposium on Terrestrial Gravimetry: Static and Mobile Measurements (TG-SMM2013) – 17.-20.9.2013, pp 125–130. State Research Center of Russia Elektropribor, St. Petersburg

    Google Scholar 

  • Vitushkin L (2011) Measurement standards in gravimetry. Gyroscopy Navig 2(3):184–191. doi:10.1134/s2075108711030126

    Article  Google Scholar 

  • Vitushkin L (2015) Absolute ballistic gravimeters. Gyroscopy Navig 6(4):254–259. doi:10.1134/s207510871504015x

    Article  Google Scholar 

Download references

Acknowledgements

This work was in part funded by the German Research Foundation (DFG, MU 1141/16-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Schilling .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Schilling, M., Timmen, L. (2016). Traceability of the Hannover FG5X-220 to the SI Units. In: Freymueller, J.T., Sánchez, L. (eds) International Symposium on Earth and Environmental Sciences for Future Generations. International Association of Geodesy Symposia, vol 147. Springer, Cham. https://doi.org/10.1007/1345_2016_226

Download citation

Publish with us

Policies and ethics