Skip to main content

Biobased Polyamides: Academic and Industrial Aspects for Their Development and Applications

  • Chapter
  • First Online:
Synthetic Biodegradable and Biobased Polymers

Part of the book series: Advances in Polymer Science ((POLYMER,volume 293))

Abstract

Polyamides are very important polymers for a wide range of applications. In the context of Green Chemistry and the development of sustainable polymers from renewable resources, many polyamides have meanwhile been developed that are derived from natural building blocks. In addition to sustainability, biobased polyamides can have special structures and properties that cannot be obtained so easily via fossil-based pathways. This article gives an overview over the recent developments in this field and elucidates the potential of these polymers for different applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Skoczinski P, Carus M, de Guzman D, Käb H, Chinthapalli R, Ravenstijn J, Baltus W, Raschka A (2021) Biobased building blocks and polymers – global capacities. Production and trends 2020–2025, short version. nova-Institut GmbH

    Google Scholar 

  2. Vollmert B (1988) Grundriss der Makromolekularen Chemie. E. Vollmert – Verlag, Karlsruhe

    Google Scholar 

  3. Winnacker M, Rieger B (2016) Biobased polyamides: recent advances in basic and applied research. Macromol Rapid Commun 37:1391–1413. https://doi.org/10.1002/marc.201600181

    Article  CAS  PubMed  Google Scholar 

  4. Goodman CM, Choi S, Shandler S, DeGrado WF (2007) Foldamers as versatile frameworks for the design and the evolution of function. Nat Chem Biol 3:252–262. https://doi.org/10.1038/nchembio876

    Article  CAS  PubMed  Google Scholar 

  5. Hill DJ, Mio MJ, Prince RB, Hughes TS, Moore JS (2001) A field guide to foldamers. Chem Rev 101:3893–4011. https://doi.org/10.1038/nchem.530

    Article  CAS  PubMed  Google Scholar 

  6. Schmitz K, Schepers U (2004) Polyamides as artificial transcription factors. Angew Chem Int Ed 43:2472–2475. https://doi.org/10.1002/anie.200301745

    Article  CAS  Google Scholar 

  7. Becker GW, Braun D (eds) (1998) Kunststoff-handbuch technische thermoplaste, polyamide. Carl Hanser Verlag, München Wien

    Google Scholar 

  8. Dong C, Wang H, Zhang Z, Zhang T, Liu B (2014) Carboxybetaine methacrylate oligomer modified nylon for circulating tumor cell capture. J Colloid Interface Sci 432:135–143. https://doi.org/10.1016/j.jcis.2014.07.003

    Article  CAS  PubMed  Google Scholar 

  9. Zhang ZB, Zhu XL, Xu FJ, Neoh KG, Kang ET (2009) Temperature- and pH-sensitive nylon membranes prepared via consecutive surface-initiated atom transfer radical graft polymerization. J Membr Sci 342:300–306. https://doi.org/10.1016/j.memsci.2009.07.004

    Article  CAS  Google Scholar 

  10. Millot C, Fillot LA, Lame O, Sotta P, Segula R (2015) Assessment of polyamide-6 crystallinity by DSC: temperature dependence of the metling enthalpy. J Therm Anal Calorim 122:307–314. https://doi.org/10.1007/s10973-015-4670-5

    Article  CAS  Google Scholar 

  11. Holmes DR, Brunn CW, Smith DJ (1955) The crystal structure of polycaproamide: nylon 6. J Polym Sci 17:159–177. https://doi.org/10.1002/pol.1955.120178401

    Article  CAS  Google Scholar 

  12. Carothers WH, Berchet GJ (1930) Studies on polymerization and ring formation – viii. Amides from e-aminocaproic acid. J Am Chem Soc 52:5289–5291. https://doi.org/10.1021/ja01375a091

    Article  CAS  Google Scholar 

  13. Carothers WH (1931) Polymerization. Chem Rev 8(3):353–426. https://doi.org/10.1021/cr60031a001

    Article  CAS  Google Scholar 

  14. Smith JK, Hounshell DA (1985) Wallace H Carothers and fundamental research at DuPont. Science 229:436–442. https://doi.org/10.1126/science.229.4712.436

    Article  CAS  PubMed  Google Scholar 

  15. Hanford WE, Joyce RM (1948) Polymeric amides from epsilon-caprolactam. J Polym Sci 3(2):167–172

    CAS  Google Scholar 

  16. Samanta SR (1992) Intrinsic viscosity and molecular weight measurement of nylon 66 polymers. J Appl Polym Sci 45:1635–1640. https://doi.org/10.1002/app.1992.070450914

    Article  CAS  Google Scholar 

  17. Scholl M, Kadlecova Z, Klok HA (2009) Dendritic and hyperbranched polymers. Prog Polym Sci 34:24–61. https://doi.org/10.1016/j.progpolymsci.2008.09.001

    Article  CAS  Google Scholar 

  18. Marchildon K (2011) Polyamides – still strong after seventy years. Macromol React Eng 5:22–54. https://doi.org/10.1002/mren.201000017

    Article  CAS  Google Scholar 

  19. Russo S, Casazza E (2012) Ring-opening polymerization of cyclic amides (lactams). In: Penczek S, Grubbs R (eds) Polymer science: a comprehensive reference, vol vol 4. Elsevier, Amsterdam, pp 331–396. https://doi.org/10.1016/B978-0-444-53349-4.00109-6

    Chapter  Google Scholar 

  20. Keim W (2006) Kunststoffe: Synthese, Herstellungsverfahren, Apparaturen. Wiley-VCH, Weinheim

    Google Scholar 

  21. Kohan MI (1995) Nylon plastics handbook. Hanser, New York

    Google Scholar 

  22. Sheldon RA (2014) Green and sustainable manufacture of chemicals from biomass: state of the art. Green Chem 16:915–963. https://doi.org/10.1039/c3gc41935e

    Article  CAS  Google Scholar 

  23. Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick Jr WJ, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T (2006) The path forward for biofuels and biomaterials. Science 311:484–489. https://doi.org/10.1126/science.1114736

    Article  CAS  PubMed  Google Scholar 

  24. Anastas P, Eghbali N (2010) Green chemistry: principles and practice. Chem Soc Rev 39:301–312. https://doi.org/10.1039/B918763B

    Article  CAS  PubMed  Google Scholar 

  25. Mecking S (2004) Nature or petrochemistry?—biologically degradable materials. Angew Chem Int Ed 43:1078–1085. https://doi.org/10.1002/anie.200301655

    Article  CAS  Google Scholar 

  26. Sheldon RA (2008) Green factors, green chemistry and catalysis: and odyssee. Chem Commun 29:3352–3365. https://doi.org/10.1039/b803584a

    Article  CAS  Google Scholar 

  27. Picataggio St, Beardslee T (2012) US 8,241,879 B2, Verdezyne, Inc

    Google Scholar 

  28. Burgard AP, Pharkya P, Osterhout RE (2010) US 7,799,545 B2, Genomatica, Inc

    Google Scholar 

  29. Baynes BM, Geremia JM. WO 2010/068944 A2, Celexion, LLC

    Google Scholar 

  30. Mülhaupt R (2013) Green polymer chemistry and biobased plastics: dreams and reality. Macromol Chem Phys 214:159–174. https://doi.org/10.1002/macp.201200439

    Article  CAS  Google Scholar 

  31. Iwata T (2015) Biodegradable and biobased polymers: future-prospects of ecofriendly plastics. Angew Chem Int Ed 54:3210–3215. https://doi.org/10.1002/anie.201410770

    Article  CAS  Google Scholar 

  32. Hufendiek A, Barner-Kowollik C, Meier MAR (2015) Renewable, fluorescent and thermoresponsive: cellulose copolymers via light-induced ligation in solution. Polym Chem 6:2188–2191. https://doi.org/10.1039/C5PY00063G

    Article  CAS  Google Scholar 

  33. Doi Y (1990) Microbial polyesters. Wiley-VCH, Weinheim

    Google Scholar 

  34. Reichardt R, Rieger B (2012) Poly(3-hydroxybutyrate) from carbon monoxide. Adv Polym Sci 245:49–90. https://doi.org/10.1007/12-2011-127

    Article  CAS  Google Scholar 

  35. Nun P (1981) Chemie der Naturstoffe, Akademie-Verlag-Berlin

    Google Scholar 

  36. Yao K, Tang C (2013) Controlled polymerization of next-generation renewable monomers and beyond. Macromolecules 46:1689–1712. https://doi.org/10.1021/ma3019574

    Article  CAS  Google Scholar 

  37. Gupta AP, Kumar V (2007) New emerging trends in synthetic biodegradable polymers: polylactide: a critique. Eur Polym J 43:4053–4074. https://doi.org/10.1016/j.eurpolymj.2007.06.045

    Article  CAS  Google Scholar 

  38. Miller SA (2013) Sustainable polymers: opportunities for the next decade. ACS Macro Lett 2:550–554. https://doi.org/10.1021/mz400207g

    Article  CAS  PubMed  Google Scholar 

  39. Gandini A, Lacerda TM, Carvalho AJF, Trovatti E (2016) Progress of polymers from renewable resources: furans, vegetable oils and polysaccharides. Chem Rev 116:1637–1669. https://doi.org/10.1021/acs.chemrev.5b00264

    Article  CAS  PubMed  Google Scholar 

  40. Williams CK, Hillmyer MA (2008) Polymers from renewable ressources: a perspective for a special issue of polymer reviews. Polym Rev 48:1–10. https://doi.org/10.1080/15583720701834133

    Article  CAS  Google Scholar 

  41. Biermann U, Bornscheuer U, Meier MAR, Metzger JO, Schäfer HJ (2011) Oils and fats as renewable raw materials in chemistry. Angew Chem Int Ed 50:3854–3871. https://doi.org/10.1002/anie.201002767

    Article  CAS  Google Scholar 

  42. Meier MAR, Metzger JO, Schubert US (2007) Plant oil renewable resources as green alternatives in polymer science. Chem Soc Rev 36:1788–1802. https://doi.org/10.1039/b703294c

    Article  CAS  PubMed  Google Scholar 

  43. Tokay BA (2005) Biomass chemicals. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. https://doi.org/10.1002/14356007.a04

    Chapter  Google Scholar 

  44. Brehmer B (2014) Kabasci S (ed) Biobased plastics: materials and applications. Wiley, Chichester

    Google Scholar 

  45. Brehmer B, Boom RM, Sanders J (2009) Maximum fossil fuel feedstock replacement potential of petrochemicals via biorefineries. Chem Eng Res Des 87:1103–1119. https://doi.org/10.1016/j.cherd.2009.07.010

    Article  CAS  Google Scholar 

  46. Nun P (1981) Chemie der Naturstoffe. Akademie-Verlag, Berlin, pp 54–138

    Google Scholar 

  47. Seite (2021) Enzym. In: Wikipedia – Die freie Enzyklopädie. Bearbeitungsstand: 27. September 2021, 06:39 UTC. https://de.wikipedia.org/w/index.php?title=Enzym&oldid=215921140. Abgerufen: 20. Oktober 2021, 20:49 UTC

  48. Seite (2021) Kollagene. In: Wikipedia – Die freie Enzyklopädie. Bearbeitungsstand: 14. Mai 2021, 05:46 UTC. https://de.wikipedia.org/w/index.php?title=Kollagene&oldid=211933868. Abgerufen: 20. Oktober 2021, 21:28 UTC

  49. Seite (2021) Wolle. In: Wikipedia – Die freie Enzyklopädie. Bearbeitungsstand: 22. September 2021, 10:32 UTC. https://de.wikipedia.org/w/index.php?title=Wolle&oldid=215798369. Abgerufen: 20. Oktober 2021, 21:37 UTC

  50. Seite (2021) Spinnennetz. In: Wikipedia – Die freie Enzyklopädie. Bearbeitungsstand: 24. September 2021, 09:01 UTC. https://de.wikipedia.org/w/index.php?title=Spinnennetz&oldid=215849150. Abgerufen: 26. Oktober 2021, 13:43 UTC

  51. Seite (2021) Byssus. In: Wikipedia – Die freie Enzyklopädie. Bearbeitungsstand: 1. April 2021, 06:19 UTC. https://de.wikipedia.org/w/index.php?title=Byssus&oldid=210432259. Abgerufen: 26. Oktober 2021, 13:42 UTC

  52. Seite (2021) Seide. In: Wikipedia – Die freie Enzyklopädie. Bearbeitungsstand: 22. September 2021, 12:30 UTC. https://de.wikipedia.org/w/index.php?title=Seide&oldid=215802448. Abgerufen: 20. Oktober 2021, 21:55 UTC

  53. Wikipedia Contributors (1 Oct 2021). Silk. In: Wikipedia. The free encyclopedia. https://en.wikipedia.org/w/index.php?title=Silk&oldid=1047603307. Accessed 22:03, 27 Oct 2021

  54. Wikipedia Contributors (20 Sept 2021) Spider web. In: Wikipedia. The free encyclopedia. https://en.wikipedia.org/w/index.php?title=Spider_web&oldid=1045405391. Accessed 22:02, 20 Oct 2021

  55. Seite (2021) Sojaprotein. In: Wikipedia – Die freie Enzyklopädie. Bearbeitungsstand: 6. Oktober 2021, 21:47 UTC. https://de.wikipedia.org/w/index.php?title=Sojaprotein&oldid=216172018. Abgerufen: 20. Oktober 2021, 22:19 UTC

  56. EN 16640:2017-02 Biobasierte Produkte – Gehalt an biobasiertem Kohlenstoff – Bestimmung des Gehalts an biobasiertem Kohlenstoff mittels Radiokarbonmethode; EN 16785-1:2015-12 Biobasierte Produkte – Biobasierter Gehalt – Teil 1: Bestimmung des biobasierten Gehalts unter Verwendung der Radiokarbon- und Elementaranalyse; EN ISO 14020:2001-10 Umweltkennzeichen und -deklarationen – Allgemeine Grundsätze (ISO 14020:2000); EN 16575:2014-08 Biobasierte Produkte – Terminologie; EN 16785-2:2018-03 Biobasierte Produkte – Biobasierter Gehalt – Teil 2: Bestimmung des biobasierten Gehalts unter Verwendung der Materialbilanzmethode; EN 16848:2016-11 Biobasierte Produkte – Anforderungen an die Kommunikation von Eigenschaften bei Firmenkundengeschäften unter Verwendung eines Datenblattes; EN 16935:2017-05 Biobasierte Produkte – Anforderungen an die Aussagen von Unternehmen und die Kommunikation zwischen Unternehmen und Verbrauchern; ISO 16620-4:2016-12 Kunststoffe – Bestimmung des biobasierten Anteils – Teil 4: Prüfverfahren für die Bestimmung des Gesamtgehalts an biobasierter Masse; DIN EN ISO 472:2013-06 Kunststoffe – Fachwörterverzeichnis (ISO 472:2013); DIN ISO 13065:2017-06 Nachhaltigkeitskriterien für Bioenergie (ISO 13065:2015); EN ISO 14024:2018-03 Umweltkennzeichnungen und -deklarationen – Umweltkennzeichnung Typ I – Grundsätze und Verfahren (ISO 14024:2018); EN 16751:2016-04 Biobasierte Produkte – Nachhaltigkeitskriterien; EN 16760:2015-11 Biobasierte Produkte – Ökobilanzen; ISO 13065:2015-09 Nachhaltigkeitskriterien für Bioenergie; ISO 15270:2008-06 Kunststoffe – Richtlinie für die Verwertung von Kunststoff-Abfällen; ISO 472:2013-02 Kunststoffe – Fachwörterverzeichnis; EN 17228:2019 Plastics – Biobased polymers, plastics, and plastics products – Terminology, characteristics and communication; DIN EN 13432:2000-12 Packaging – Requirements for packaging recoverable through composting and biodegradation – Test scheme and evaluation criteria for the final acceptance of packaging

    Google Scholar 

  57. Smith AD, Datta SP, Howard Smith G, Campell PN, Bentley R, McKincey HA, Bender DA, Carozzi AJ, Goodwin FRSTW, Parish JH, Standford SC (1997) Oxford dictonary of biochemistry and molecular biology. Oxford University Press, Oxford

    Google Scholar 

  58. Seite (2021) Biologisch abbaubarer Kunststoff. In: Wikipedia – Die freie Enzyklopädie. Bearbeitungsstand: 7. Juli 2021, 09:44 UTC. https://de.wikipedia.org/w/index.php?title=Biologisch_abbaubarer_Kunststoff&oldid=213639459. Abgerufen: 21. Oktober 2021, 17:50 UTC

  59. Okada M (2001) Molecular design and syntheses of glycopolymers. Prog Polym Sci 26:67–104. https://doi.org/10.1016/S0079-6700(00)00038-1

    Article  CAS  Google Scholar 

  60. Seite (2021) Pflanzenöle. In: Wikipedia – Die freie Enzyklopädie. Bearbeitungsstand: 28. Juli 2021, 01:59 UTC. https://de.wikipedia.org/w/index.php?title=Pflanzen%C3%B6le&oldid=214270690. Abgerufen: 29. Oktober 2021, 08:07 UTC

  61. Ogunniyi DS (2006) Castor oil: a vital industrial raw material. Bioresour Technol 97:1086–1091. https://doi.org/10.1016/j.biortech.2005.03.028

    Article  CAS  PubMed  Google Scholar 

  62. Mutlu H, Meier MAR (2010) Castor oil as a renewable resource for the chemical industry. Eur J Lipid Sci Technol 112:10–30. https://doi.org/10.1002/ejlt.200900138

    Article  CAS  Google Scholar 

  63. Biermann U et al (2000) Neue Synthesen mit Ölen und Fetten als nachwachsende Rohstoffe für die chemische Industrie. Angew Chem 112:2292–2310. https://doi.org/10.1002/1521-3757(20000703)112:13<2292::AID-ANGE2292>3.0.CO;2-V

    Article  Google Scholar 

  64. Selected recent, publicly funded projects—or running open calls—in this context (or publications, sub-projects, proposals of those) are: (a) “Biomasseanfall aus mikrobiol. Zitronensäureproduktion (Chitin, Öle)”, EU program call HORIZON-CL6-2021-CIRCBIO-01-05: Novel, non-plant biomass feedstocks for industrial applications, see e.g.,https://www.efsa.europa.eu/en/funding-calls/novel-non-plant-biomass-feedstocks-industrial-applications (retrieved 2021/10/29); (b) “ChiBio: Development of an integrated biorefinery for processing chitin rich biowaste to specialty and fine chemicals”, see e.g., https://www.igb.fraunhofer.de/en/research/bioinspired-chemistry/bioinspired-syntheses/projects/chibio.html (retrieved 2021/10/29); (c) “SynRg: Systembiotechnologie nachwachsender Rohstoffgewinnung” (system biotechnology of renewable raw material sourcing), see e.g., https://www.fnr.de/index.php?id=11150&fkz=22023108 (retrieved 2021/10/29); (d) “COSMOS: Camelina & crambe Oil crops as Sources for Medium-chain Oils for Specialty oleochemicals”, EU program number Horizon2020-635405, see e.g., https://cordis.europa.eu/project/id/635405 (retrieved 2021/10/29)

  65. Mudiyanselage AY, Viamajala S, Varanasi S, Yamamoto K (2014) Simple ring-closing metathesis approach for synthesis of PA11, 12, and 13 precursors from oleic acid. ACS Sustain Chem Eng 2:2831–2836. https://doi.org/10.1021/sc500599u

    Article  CAS  Google Scholar 

  66. Abel GA, Viamajala S, Varanasi S, Yamamoto K (2016) Toward sustainable synthesis of PA12 (nylon-12) precursor from oleic acid using ring-closing metathesis. ACS Sustain Chem Eng 4:5703–5710. https://doi.org/10.1021/acssuschemeng.6b01648

    Article  CAS  Google Scholar 

  67. Seite (2021) Palmöl. In: Wikipedia – Die freie Enzyklopädie. Bearbeitungsstand: 27. Juli 2021, 14:53 UTC. https://de.wikipedia.org/w/index.php?title=Palm%C3%B6l&oldid=214257899. Abgerufen: 13. August 2021, 12:29 UTC

  68. Seite (2021) Sojaöl. In: Wikipedia – Die freie Enzyklopädie. Bearbeitungsstand: 11. April 2020, 13:25 UTC. https://de.wikipedia.org/w/index.php?title=Soja%C3%B6l&oldid=198744065. Abgerufen: 13. August 2021, 12:31 UTC

  69. Seite (2021) Rapsöl. In: Wikipedia – Die freie Enzyklopädie. Bearbeitungsstand: 21. Juli 2021, 11:34 UTC. https://de.wikipedia.org/w/index.php?title=Raps%C3%B6l&oldid=214077187. Abgerufen: 13. August 2021, 12:32 UTC

  70. Seite (2021) Sonnenblumenöl. In: Wikipedia – Die freie Enzyklopädie. Bearbeitungsstand: 6. Juni 2021, 13:24 UTC. https://de.wikipedia.org/w/index.php?title=Sonnenblumen%C3%B6l&oldid=212727517. Abgerufen: 13. August 2021, 14:17 UTC

  71. Prasad RBN, Rao BVSK (2017) Chapter 8 – chemical derivatization of castor oil and their industrial utilization. In: Ahmad MU (ed) Fatty acids – chemistry, synthesis, and applications. AOCS Press, pp 279–303. https://doi.org/10.1016/B978-0-12-809521-8.00008-8

    Chapter  Google Scholar 

  72. Carlson KD, Sohns VE, Perkins Jr RB, Huffman EL (1977) Brassylic acid: chemical intermediate from high-erucic oils. Ind Eng Chem Prod Res Dev 16:95–101. https://doi.org/10.1021/i360061a020

    Article  CAS  Google Scholar 

  73. Rieche A (20 Mar 1931) DE565158

    Google Scholar 

  74. Astruc D (2005) The metathesis reactions: from a historical perspective to recent developments. New J Chem 29:42–56. https://doi.org/10.1039/B412198H

    Article  CAS  Google Scholar 

  75. Mudiyanselage AY (2016) Progress towards the production of bio-sourced specialty chemicals. Dissertation, The University of Toledo

    Google Scholar 

  76. Abel GA (2017) Microalgae fractionation and production of high value nylon precursors. Dissertation, The University of Toledo

    Google Scholar 

  77. van Dam PB, Mittelmeijer MC, Boelhouwer C (1972) Metathesis of unsaturated fatty acid esters by a homogeneous tungsten hexachloride–tetramethyltin catalyst. J Chem Soc Chem Commun:1221–1222. https://doi.org/10.1039/C39720001221

  78. Vilela C, Silvestre AJD, Meier MAR (2012) Plant oil-based long-chain C26 monomers and their polymers. Macromol Chem Phys 213:2220–2227. https://doi.org/10.1002/macp.201200332

    Article  CAS  Google Scholar 

  79. Mutlu H, Hofsäß R, Montenegro RE, Meier MAR (2013) Self-metathesis of fatty acid methyl esters: full conversion by choosing the appropriate plant oil. RSC Adv 3:4927. https://doi.org/10.1039/C3RA40330K

    Article  CAS  Google Scholar 

  80. Oelmann S, Meier MAR (2015) Synthesis of modified polycaprolactams obtained from renewable resources. Macromol Chem Phys 216:1972–1981. https://doi.org/10.1002/macp.201500257

    Article  CAS  Google Scholar 

  81. Tullo AH (2008) Cargill, materia launch new firm. C&EN 86(13)

    Google Scholar 

  82. Snead ThE, Cohen SA, Gildon DL (2014) WO2014058867A1. Elevance Renewable Science Inc

    Google Scholar 

  83. Verbio Biofuel and Technology (21 Sept 2021) Corporate news. https://www.verbio.de/investor-relations/aktuelles-publikationen/detail/rekordergebnis-und-rekordumsatz-gj-20202021-attraktives-marktumfeld-bis-2030-umfangreiches-investitionsprogramm/. Accessed 17 Oct 2021

  84. Winnacker-Küchler (2005) Chemische technologie, vol vol 5. 5th edn. Wiley-VCH, p 65

    Google Scholar 

  85. Hibbel J et al (2013) Chemie. Ingenieur Technik 85(12):1853–1871

    CAS  Google Scholar 

  86. Miao X, Fischmeister C, Dixneuf PH, Bruneau C, Dubois JL, Couturier JL (2012) Polyamide precursors from renewable 10-undecenenitrile and methyl acrylateviaolefin cross-metathesis. Green Chem 14:2179–2183. https://doi.org/10.1039/C2GC35648A

    Article  CAS  Google Scholar 

  87. Abel GA, Nguyen KO, Viamajala S, Varanasi S, Yamamoto K (2014) Cross-metathesis approach to produce precursors of nylon 12 and nylon 13 from microalgae. RSC Adv 4:55622–55628. https://doi.org/10.1039/C4RA10980E

    Article  CAS  Google Scholar 

  88. Ullmanns Encyklopädie der Technischen Chemie (1954) 3. Aufl, Bd 5, S 826, Verlag Urban&Schwarz, München-Berlin

    Google Scholar 

  89. Bruson HA, Covert LW (1937) Process for manufactziring sebacic acid, US2182056. Rohm & Haas Company

    Google Scholar 

  90. Nanavati DD (1976) High temperature fusion of castor oil with caustic soda: a critical study. J Sci Ind Res 35:163–168

    CAS  Google Scholar 

  91. Ullmanns Encyklopädie der Technischen Chemie (1963) 3 Aufl, Bd 14, S 63, Verlag Urban&Schwarz – München-Berlin

    Google Scholar 

  92. Genas M (1962) Rilsan (polyamid 11), synthese und eigenschaften. Angew Chem 74:535–540. https://doi.org/10.1002/ange.19620741504

    Article  CAS  Google Scholar 

  93. Taoka A, Uchida S, Urawa S (1978) Verfahren zur Herstellung von gradketteigen Mono und/oder Dicarbonsäuren mit 8 bis 18 Kohlenstoffatomen durch mirkobiologische Oxidation DE2853847C2. Bio Research Center Co, Ltd, Tokyo

    Google Scholar 

  94. Picataggio St, Deanda K, Eirich L (1991) Site-specific modification of the canida tropicalis genome WO199106660. Henkel Research Corporation

    Google Scholar 

  95. Picataggio St, Rohrer T, Eirich L (1991) Method for increasing the omega-hydroxylase activity in candida tropicalis WO199114781. Henkel Research Corporation

    Google Scholar 

  96. Schaffer St, Corthals J, Hennemann H-G, Haeger H, Volland M, Roos M (2015) Preparation of amines and diamines from a carboxylic acid or dicarboxylic acid or a monoester thereof, EP 2935602B1. Evonik Degussa GmbH

    Google Scholar 

  97. (3 Aug 2021) An alternative raw material for polyamide 12 Evonik is operating a pilot plant for biobased ω-amino lauric acid. https://www.vestamid.com/media/pressattachments/c239/n37328/a17972.pdf

  98. Seite (2021) Kohlenhydrate. In: Wikipedia – Die freie Enzyklopädie. Bearbeitungsstand: 7. Juni 2021, 10:51 UTC. https://de.wikipedia.org/w/index.php?title=Kohlenhydrate&oldid=212754583. Abgerufen: 10. August 2021, 12:29 UTC

  99. Lichtenthaler FW (2012) Carbohydrates as organic raw materials. In: Ullmann’s encyclopadia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. https://doi.org/10.1002/14356007.n05_n07

    Chapter  Google Scholar 

  100. Nun P (1981) Chemie der Naturstoffe. Akademie-Verlag, Berlin, pp 138–218

    Google Scholar 

  101. Lichtenthaler FW (2012) Ullmann’s encyclopadia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. https://doi.org/10.1002/14356007.a05_079.pub2

    Book  Google Scholar 

  102. Drauz K, Grayson I, Kleemann A, Krimmer HP, Leuchtenberger W, Weckbecker C (2012) Amino acids. In: Ullmann’s encyclopadia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. https://doi.org/10.1002/14356007.a02_057.pub2

    Chapter  Google Scholar 

  103. Werpy T, Petersen G, US-Department of Energy (2004) Top value added chemicals from biomass, report no. GO102004-1992. US Department of Energy, Office of Scientific and Technical Information Oakridge, TN. http://www.osti.gov/bridge

  104. Seite (2021) Furfural. In: Wikipedia – Die freie Enzyklopädie. Bearbeitungsstand: 22. Mai 2021, 02:37 UTC. https://de.wikipedia.org/w/index.php?title=Furfural&oldid=212210773. Abgerufen: 11. August 2021, 07:11 UTC

  105. Bicker M, Hirth J, Vogel H (2003) Dehydration of fructose to 5-hydroxymethylfurfural in suband supercritical acetone. Green Chem 5:280–284. https://doi.org/10.1039/b211468b

    Article  CAS  Google Scholar 

  106. Chheda JN, Roman-Leshkov Y, Dumesic JA (2007) Production of 5-hydroxymethylfurfural and furfural by dehydration of biomass-derived mono- and poly-saccharides. Green Chem 9:342–350. https://doi.org/10.1039/b611568c

    Article  CAS  Google Scholar 

  107. Moreaua C, Belgacem MN, Gandini A (2004) Recent catalytic advances in the chemistry of substituted furans from carbohydrates and in the ensuing polymers. Top Catal 27:11–30

    Google Scholar 

  108. https://www.bioplasticsmagazine.com/en/news/meldungen/20161213-AVALON-Industries-takes-over-operations-from-AVA-CO2.php. Accessed 12 Aug 2021

  109. Buntara T, Noel S, Phua PH, Melián-Cabrera I, de Vries JG, Heeres HJ (2011) Caprolactam from renewable resources: catalytic conversion of 5-hydroxymethylfurfural into caprolactone. Angew Chem Int Ed 50:7083–7087. https://doi.org/10.1002/anie.201102156

    Article  CAS  Google Scholar 

  110. Ishii Y, Yoshida T, Yamawaki K, Ogawa M (1988) Lactone synthesis by, -diols with hydrogen peroxide catalyzed by heteropoly acids combined with cetylpyridinium chloride. J Org Chem 53:5549

    CAS  Google Scholar 

  111. Bamoharrama FF, Heravi MM, Roshani M, Gharib A, Jahangir M (2006) A catalytic method for synthesis of -butyrolactone, −caprolactone and 2-cumaranone in the presence of Preyssler’s anion, [NaP5W30O110] 14−, as a green and reusable catalyst. J Mol Catal A 252:90. https://doi.org/10.1016/j.molcata.2006.01.067

    Article  CAS  Google Scholar 

  112. Weissermel K, Arpe HJ (1994) Industrielle organische chemie.4th edn. VCH, Weinheim, p S 279

    Google Scholar 

  113. https://en.wikipedia.org/w/index.php?title=Hydroxymethylfurfural&oldid=1028839131. Accessed 9 Aug 2021

  114. Karrer P (1954) Lehrbuch der organischen Chemie, vol 340. Georg Thieme Verlag, Stuttgart, p 732

    Google Scholar 

  115. Kamm B (2011) Plattformchemikalien, RD-16-06323. In: Böckler F, Dill B, Dingerdissen U, Eisenbrand G, Faupel F, Fugmann B, Gamse T, Matissek R, Pohnert G, Sprenger G (eds) RÖMPP. Georg Thieme Verlag, Stuttgart. https://roempp.thieme.de/lexicon/RD-16-06323. Accessed Aug 2021

  116. Smith DD, Flores J, Aberson R, Dam MA, Duursma A, Gruter GJ (2015) Polyamides containing the bio-based 2,5-furandicarboxylic acid, WO2015059047A1. Solvay Specialty Polymers USA, LLC

    Google Scholar 

  117. Mitiakoudis A, Gandini A (1991) Synthesis and characterization of furanic polyamides. Macromolecules 24:830–835. https://pubs.acs.org/doi/pdf/10.1021/ma00004a003

    CAS  Google Scholar 

  118. Grosshardt O, Fehrenbacher U, Kowollik K, Tübke B, Dingenouts N, Wilhelm M (2009) Synthese und Charakterisierung von Polyestern und Polyamiden auf der Basis von Furan-2,5-dicarbonsäure. Chemie Ingenieur Technik 81(11):1829–1835. https://doi.org/10.1002/cite.200900090

    Article  CAS  Google Scholar 

  119. Habraken G, Sprafke JK, Da Silva M (2017) Production of a polyamide that contains 2,5-bis(aminomethyl)furan, WO2017005812. BASF SE

    Google Scholar 

  120. Gharbi S, Gandini A (1999) Polyamides incorporating furan moieties. 1. Interfacial polycondensation of 2,2′-bis(5-chloroformyl-2-furyl)propane with 1,6-diaminohexane. Acta Polym 50:293–297. https://doi.org/10.1002/(SICI)1521-4044(19990801)50:8<293::AID-APOL293>3.0.CO;2-I

    Article  CAS  Google Scholar 

  121. Abid M, El Gharbi R, Gandini A (2000) Polyamides incorporating furan moieties, 3. Polycondensation of 2-furamide with paraformaldehyde. Polymer 41:3555–3560. https://doi.org/10.1016/S0032-3861(99)00538-8

    Article  CAS  Google Scholar 

  122. Jeol S, Decampo F, Zhu L (2015) Polyamide, method of its preparation and uses thereof, EP2875063B1. Rhodia Operations

    Google Scholar 

  123. Draths KM, Frost JF (1994) Environmentally compatible synthesis of adipic acid from o-glucose. J Am Chem Soc 116(1):399–400. https://doi.org/10.1021/ja00080a057

    Article  CAS  Google Scholar 

  124. Shen L, Haufe J, Patel MK (2009) Product overview and market projection of emerging biobased plastics. PRO-BIP

    Google Scholar 

  125. Harrington LB, Jha RK, Kern TL, Schmidt EN, Canales GM, Finney KB, Koppisch AT, Strauss CEM, Fox DT (2017) Rapid thermostabilization of bacillus thuringiensis serovar konkukian 97−27 dehydroshikimate dehydratase through a structure-based enzyme design and whole cell activity assay. ACS Synth Biol 6:120–129. https://doi.org/10.1021/acssynbio.6b00159

    Article  CAS  PubMed  Google Scholar 

  126. Yu JL, Xia XX, Zhong JJ, Qian ZG (2014) Direct biosynthesis of adipic acid from a synthetic pathway in recombinant Escherichia coli. Biotechnol Bioeng 111:2580–2586. https://doi.org/10.1002/bit.25293

    Article  CAS  PubMed  Google Scholar 

  127. Matthiesen JE, Carraher JM, Vasiliu M, Dixon DA, Tessonnier JP (2016) Electrochemical conversion of muconic acid to biobased diacid monomers. ACS Sustain Chem Eng 4:3575–3585. https://doi.org/10.1021/acssuschemeng.6b00679

    Article  CAS  Google Scholar 

  128. Boussie TR, Diamond GM, Dias E, Murphy V (2016) Synthesis of adipic acid starting from renewable raw materials. In: Chemicals and fuels from bio-based building blocks. Wiley-VCH Verlag GmbH & Co. KGaA, pp 151–172. https://doi.org/10.1002/9783527698202.ch6

    Chapter  Google Scholar 

  129. Herzog BD, Smiley RA (2011) Hexamethylene diamine. In: Ullmann’s encyclopedia of industrial chemistry. https://doi.org/10.1002/14356007.a12_629.pub2

    Chapter  Google Scholar 

  130. Rios J, Lebeau J, Yang T, Lia S, Lynch MD (2021) A critical review on the progress and challenges to a more sustainable, cost competitive synthesis of adipic acid. Green Chem 23:3172. https://doi.org/10.1039/d1gc00638j

    Article  CAS  Google Scholar 

  131. Seite (2021) Lysin. In: Wikipedia – Die freie Enzyklopädie. Bearbeitungsstand: 3. September 2021, 20:30 UTC. https://de.wikipedia.org/w/index.php?title=Lysin&oldid=215300716. Abgerufen: 9. September 2021, 08:29 UTC

  132. Moeckel B, Pfefferle W, Brand S, Puehler A, Kalinowski J, Bathe B (2001) Verfahren zur fermentativen Herstellung von L-Lysin unter Verwendung coryneformer Bakterien, EP1104810A1. Evonik Operations GmbH

    Google Scholar 

  133. Oh JW, Kim SJ, Cho YJ, Park NH, Lee LH (1990) Nouveau micro-organisme capable de produire de la l-lysine et procede de fermentation l'utilisant pour produire de la l-lysine, FR2645172. Chail Sugar

    Google Scholar 

  134. Frost JW (2005) Synthesis of caprolactam from lysine; WO2005/123669A1. Board of Trustees of Michigan State University

    Google Scholar 

  135. Liu X, Liu C, Qin B, Li N, Li XM (2018) Preparation of cadaverine, US9919996B2. Cathay R&D Center Co Ltd, Cathay Industrial Biotech Ltd

    Google Scholar 

  136. Zhang L. Cathay biotech to invest USD596.5 million in Northwest China’s largest synthetic biology project. https://www.yicaiglobal.com/news/cathay-biotech-to-invest-usd5965-million-in-northwest-china-largest-synthetic-biology-project. Accessed 08 Sept 2021

  137. Bioplastics MAGAZINE [06/20], vol 15, p 6

    Google Scholar 

  138. https://chemicals.basf.com/global/en/Intermediates/Renewable/Renewable_BDO.html. Accessed 09 Sept 2021

  139. Burgard A, Burk MJ, Niu W, van dien Stephen J (2008) Compositions and methods for the biosynthesis of 1,4-butanediol and its precursors, EP2137315B1. Genomatica

    Google Scholar 

  140. Burgard A, Burk MJ, Haselbeck R, Niu W, Osterhout RE, Pujol BC, Sun J, Trawick JD, van dien Stephen J, Yim H (2010) Microorganisms for the production of 1,4-Butanediol and related methods, EP2438178B1. Genomatica

    Google Scholar 

  141. Bianchi A, Dani M, Perini D, Ruggiero G (2015) Process for the production of 1,4-butanediol, EP3132046B1. Genomatica

    Google Scholar 

  142. Chemietechnik.de (2015) https://www.chemietechnik.de/markt/basf-poly-thf-aus-nachwachsenden-rohstoffen.html. Accessed 9 Sept 2021

  143. Kabasci S, Bretz I (2011) Succinic acid: synthesis of biobased polymers from renewable resources. In: Mittal V (ed) Renewable polymers: synthesis, processing, and technology. Scrivener Publishing LLC (John Wiley & Sons, Inc), Hoboken

    Google Scholar 

  144. Cornils B, Lappe P (2014) Dicarboxylic acids, aliphatic. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. https://doi.org/10.1002/14356007.a08_523.pub3

    Chapter  Google Scholar 

  145. Wiedemann P, Bader HJ, Beeken M, Ralle B (2021) Fond der chemischen Industrie: Nachwachsende Rohstoffe, überarbeitete 2 Auflage

    Google Scholar 

  146. Bechthold I, Bretz K, Kabasci S, Kopitzky R, Spinger A (2008) Succinic acid: a new platform chemical for biobased polymers from renewable resources. Chem Eng Technol 31:647–654. https://doi.org/10.1002/ceat.200800063

    Article  CAS  Google Scholar 

  147. Fachagentur Nachwachsende Rohstoffe e.V (2014) Marktanalyse nachwachsender Rohstoffe Band 34

    Google Scholar 

  148. McCoy M (2018) Succinic acid maker BioAmber is bankrupt. C&EN 96(20)

    Google Scholar 

  149. Bomgardner MM (2018) No buyer for succinic acid maker BioAmber. C&EN 96(32)

    Google Scholar 

  150. Bomgardner MM (2018) Former BioAmber site in Sarnia to get new life. C&EN 96(45)

    Google Scholar 

  151. Roose P, Eller K, Henkes E, Rossbacher R, Hoeke H (2014) Amines, aliphatic. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. https://doi.org/10.1002/14356007.a02_001.pub2

    Chapter  Google Scholar 

  152. Lützen A (2006) Glucarsäure, RD-07-01336. In: Böckler F, Dill B, Dingerdissen U, Eisenbrand G, Faupel F, Fugmann B, Gamse T, Matissek R, Pohnert G, Sprenger G (eds) RÖMPP. Georg Thieme Verlag, Stuttgart

    Google Scholar 

  153. Chen L, Kiely DE (1996) Synthesis of Stereoregular head, tail hydroxylated nylons derived from D-glucose. J Org Chem 17(61):5847–5851. https://doi.org/10.1021/jo960201e

    Article  Google Scholar 

  154. Wroblewska AA, Harings JAW, Adriaensens P, De Wildeman SMA, Bernaerts KV (2021) The effect of copolymerization of cyclic dioxolane moieties on polyamide properties. Polymer 226:123799. https://doi.org/10.1016/j.polymer.2021.123799

    Article  CAS  Google Scholar 

  155. Seite (2019) Lignocellulose. In: Wikipedia – Die freie Enzyklopädie. Bearbeitungsstand: 15. September 2019, 16:20 UTC. https://de.wikipedia.org/w/index.php?title=Lignocellulose&oldid=192279529. Abgerufen: 28. August 2021, 12:22 UTC

  156. Wikipedia Contributors (2021) Lignin. In: Wikipedia. The free encyclopedia. https://en.wikipedia.org/w/index.php?title=Lignin&oldid=1034095474. Accessed 20 Aug 2021

  157. Bruijnincx PCA, Rinaldi R, Weckhuysen BM (2015) Unlocking the potential of a sleeping giant: lignins as sustainable raw materials for renewable fuels, chemicals and materials. Green Chem 17:4860–4861. https://doi.org/10.1039/c5gc90055g

    Article  CAS  Google Scholar 

  158. Harris EE, D’Ianni J, Adkins H (1938) Reaction of hardwood lignin with hydrogen. J Am Chem Soc 60:1467–1470

    CAS  Google Scholar 

  159. Seite (2021) Lignin. In: Wikipedia – Die freie Enzyklopädie. Bearbeitungsstand: 20. Mai 2021, 15:24 UTC. https://de.wikipedia.org/w/index.php?title=Lignin&oldid=212160615. Abgerufen: 22. August 2021, 19:27 UTC

  160. Saake B, Lehen R (2012) Lignin. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. https://doi.org/10.1002/14356007.a15_305.pub3

    Chapter  Google Scholar 

  161. Lange H, Decina S, Crestini C (2013) Oxidative upgrade of lignin – recent routes reviewed. Eur Polym J 49:1151–1173. https://doi.org/10.1016/j.eurpolymj.2013.03.002

    Article  CAS  Google Scholar 

  162. Ma R, Xu Y, Zhang X (2015) Catalytic oxidation of biorefinery lignin to value-added chemicals to support sustainable biofuel production. ChemSusChem 8:24–51. https://doi.org/10.1002/cssc.201402503

    Article  CAS  PubMed  Google Scholar 

  163. Seite (2021) Sulfatverfahren (papierherstellung). In: Wikipedia – Die freie Enzyklopädie. Bearbeitungsstand: 26. Mai 2021, 23:32 UTC. https://de.wikipedia.org/w/index.php?title=Sulfatverfahren_(Papierherstellung)&oldid=212404422. Abgerufen: 30. August 2021, 20:08 UTC

  164. Seite (2021) Sulfitverfahren. In: Wikipedia – Die freie Enzyklopädie. Bearbeitungsstand: 21. Juni 2021, 21:47 UTC. https://de.wikipedia.org/w/index.php?title=Sulfitverfahren&oldid=213179353. Abgerufen: 30. August 2021, 20:13 UTC

  165. Schmitt U, Koch G, Lehen R (2013) Wood. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. https://doi.org/10.1002/14356007.a28_305.pub2

    Chapter  Google Scholar 

  166. Holladay JE, Bozell JJ, White JF, Johnson D (2007) Top value-added chemicals from biomass. Volume II – results of screening for potential candidates from biorefinery lignin. Available to the public from the National Technical Information Service, U.S. Department of Commerce, Springfield, VA. http://www.ntis.gov/ordering.htm

  167. Wikipedia Contributors (2021) Organosolv. In: Wikipedia. The free encyclopedia, 13 December 2020, 02:33 UTC. https://en.wikipedia.org/w/index.php?title=Organosolv&oldid=993900708. Accessed 28 Aug 2021

  168. Erich Gruber: Makromolekulare Chemie, Ökologie und Ökonomie der Nachwachsenden Rohstoffe: Nutzung von Lignin. https://web.archive.org/web/20040727125332/http://www.cellulose-papier.chemie.tu-darmstadt.de/Deutsch/Vorlesungen_und_Veranstaltungen/Vorlesungen/Nachwachsende_Rohstoffe/PDF/14_Nutzung_Lignin.pdf. (Memento vom 27. Juli 2004 im Internet Archive) Unterlagen zur Vorlesung Wintersemester 1999/2000

  169. Frohning CD, Kohlpaintner CW, Bohnen HW (2002) Hydroformylation. In: Cornils B, Herrmann WA (eds) Applied homogeneous catalysis with organomettalic compounds2nd edn. Wiley-VCH Verlag GmbH, Weinheim, pp 31–103

    Google Scholar 

  170. Heeres A, Schenk N, Muizebelt I, Blees R, De Waele B, Zeeuw AJ, Meyer N, Carr R, Wilbers E, Heeres HJ (2018) Synthesis of bio-aromatics from black liquors using catalytic pyrolysis. ACS Sustain Chem Eng 6:3472–3480. https://doi.org/10.1021/acssuschemeng.7b03728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Bottenbruch L, Binsack R (1988) Technische thermoplaste polyamide kunststoff handbuch 3/4. Carl Hanser Verlag München, Wien, pp 57–61

    Google Scholar 

  172. Seite (2021) 4,4′-Methylenbis(cyclohexylamin). In: Wikipedia – Die freie Enzyklopädie. Bearbeitungsstand: 28. Mai 2021, 05:49 UTC. https://de.wikipedia.org/w/index.php?title=4,4%E2%80%B2-Methylenbis(cyclohexylamin)&oldid=212445868. Abgerufen: 3. September 2021, 08:29 UTC

  173. Sheehan RJ (2012) Terephthalic acid, dimethyl terephthalate and isophthalic acid. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. https://doi.org/10.1002/14356007.a26_193.pub2

    Chapter  Google Scholar 

  174. Kloekhorst A, Heeres HJ (2015) Catalytic hydrotreatment of alcell lignin using supported Ru, Pd, and Cu catalysts. ACS Sustain Chem Eng 3:1905–1914. https://doi.org/10.1021/acssuschemeng.5b00041

    Article  CAS  Google Scholar 

  175. Weissermel K, Arpe HJ (1994) Industrielle organische chemie.4th edn. VCH, Weinheim, pp 261–262

    Google Scholar 

  176. Weissermel K, Arpe HJ (1994) Industrielle organische chemie.4th edn. VCH, Weinheim, pp 272–282

    Google Scholar 

  177. Rauen A, Weinelt F, Waldvogel SR (2020) Sustainable electroorganic synthesis of lignin-derived dicarboxylic acids. Green Chem 22:5956–5960. https://doi.org/10.1039/D0GC02210A

    Article  CAS  Google Scholar 

  178. Ma R, Guo M, Zhang X (2014) Selective conversion of biorefinery lignin into dicarboxylic acids. ChemSusChem 7:412–415. https://doi.org/10.1002/cssc.201300964

    Article  CAS  PubMed  Google Scholar 

  179. Zeng J, Yoo CG, Wang F, Pan X, Vermerris W, Tong Z (2015) Biomimetic fenton-catalyzed lignin depolymerization to high-value aromatics and dicarboxylic acids. ChemSusChem 8:861–871. https://doi.org/10.1002/cssc.201403128

    Article  CAS  PubMed  Google Scholar 

  180. Cronin DJ, Zhang X, Bartley J, Doherty WOS (2017) Lignin depolymerization to dicarboxylic acids with sodium percarbonate. ACS Sustain Chem Eng 5:6253–6260. https://doi.org/10.1021/acssuschemeng.7b01208

    Article  CAS  Google Scholar 

  181. Davis R, Bartling A, Tao L (2021) Biochemical conversion of lignocellulosic biomass to hydrocarbon fuels and products: 2020 state of technology and future research. National Renewable Energy Laboratory, Golden, CO. NREL/TP-5100-79930. https://www.nrel.gov/docs/fy21osti/79930.pdf

  182. Kühlborn J, Danner AK, Frey H, Iyer R, Arduengo AJ, Opatz T (2017) Examples of xylochemistry: colorants and polymers. Green Chem 19:3780–3786. https://doi.org/10.1039/c7gc01244f

    Article  CAS  Google Scholar 

  183. Zirbes M, Waldvogel SR (2018) Electro-conversion as sustainable method for the fine chemical production from the biopolymer lignin. Curr Opin Green Sustain Chem 14:19–25. https://doi.org/10.1016/j.cogsc.2018.05.001

    Article  Google Scholar 

  184. Schmitt D, Regenbrecht C, Hartmer M, Stecker F, Waldvogel SR (2015) Highly selective generation of vanillin by anodic degradation of lignin: a combined approach of electrochemistry and product isolation by adsorption. Beilstein J Org Chem 11:473–480. https://doi.org/10.3762/bjoc.11.53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Breiner M, Zirbes M, Waldvogel SR (2021) Comprehensive valorisation of technically relevant organosolv lignins via anodic oxidation. Green Chem 23:6449–6455. https://doi.org/10.1039/d1gc01995c

    Article  CAS  Google Scholar 

  186. Wang Z, Li Y, Zhu T, Xiong L, Liu F, Qi H (2019) Conversion of renewable vanillin into high performance polyimides via an asymmetric aromatic diamine derivation. Polym Degrad Stab 167:67–76. https://doi.org/10.1016/j.polymdegradstab.2019.06.002

    Article  CAS  Google Scholar 

  187. Savonnet E, Le Coz C, Grau E, Grelier S, Defoort B, Cramail H (2019) Divanillin-based aromatic amines: synthesis and use as curing agents for fully vanillin-based epoxy thermosets. Front Chem 7:Article 606. https://doi.org/10.3389/fchem.2019.00606

    Article  CAS  PubMed  Google Scholar 

  188. https://ec.europa.eu/info/funding-tenders/opportunities/portal/screen/opportunities/topic-details/bbi-2020-so1-f2. Accessed 5 Sept 2021

  189. Gscheidmeier M, Fleig H (2012) Turpentine. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. https://doi.org/10.1002/14356007.a27_267

    Chapter  Google Scholar 

  190. Golets M, Ajaikumar S, Mikkola JP (2015) Catalytic upgrading of extractives to chemicals: monoterpenes to “EXICALS”. Chem Rev 115:3141–3169. https://doi.org/10.1021/cr500407m

    CAS  PubMed  Google Scholar 

  191. https://www.marketwatch.com/press-release/crude-sulfate-turpentine-market-size-2021-historical-projected-revenue-figures-growth-rate-throughout-the-forecast-period-2026-2021-07-20. Accessed 10 Oct 2021

  192. European Commission, Directorate-General for Research and Innovation (2019) Top 20 innovative biobased products. https://doi.org/10.2777/85805

  193. Harmsen PFH, Hackmann MM, Bos HL (2014) Green building blocks for bio-based plastics. Biofuels Bioprod Biorefin 8:306–324. https://doi.org/10.1002/bbb.1468

    Article  CAS  Google Scholar 

  194. Zheng H, Guan Z (2011) Direct synthesis of polyamides via catalytic dehydrogenation of diols and diamines. J Am Chem Soc 133:1159–1161. https://doi.org/10.1021/ja106958s

    Article  CAS  Google Scholar 

  195. Gunanathan C, Ben-David Y, Milstein D (2007) Direct synthesis of amides from alcohols and amines with liberation of H2. Science 317:790–792. https://doi.org/10.1126/science.1145295

    Article  CAS  PubMed  Google Scholar 

  196. Reimschuessel HK (1977) Nylon 6. Chemistry and mechanisms. J Polym Sci Macromol Rev 12:65–139. https://doi.org/10.1002/pol.1977.230120102

    Article  CAS  Google Scholar 

  197. Giori G, Hayes BT (1970) Hydrolytic polymerization of caprolactam. I hydrolysis-polycondensation kinetics. J Polym Sci A1 8:335–349

    CAS  Google Scholar 

  198. Wiloth F (1955) Über den Mechanismus und die Kinetik der epsilon-Caprolactam-Polymerisation in Gegenwart von Wasser 2. Mitteilung. Über das Kondensationsgleichgewicht bei Polyamiden, eine Modelluntersuchung. Makromol Chem 15:98

    CAS  Google Scholar 

  199. Wilot F (1955) Über den Mechanismus und die Kinetik der ɛ-Caprolactam-Polymerisation in Gegenwart von Wasser. Kolloid-Zeitschrift 143:129–138. https://doi.org/10.1007/BF01519883

    Article  Google Scholar 

  200. Ogata N (1961) Studies on polycondensation reactions of nylon salt. II. The rate of polycondensation reaction of nylon 66 salt in the presence of water. Makromol Chem 43(117). https://doi.org/10.1002/macp.1961.020430111

  201. Steppan DD, Doherty MK, Malone MF (1987) A kinetic and equilibrium model for nylon 6,6 polymerization. J Appl Polym Sci 33:2333. https://doi.org/10.1002/app.1987.070330706

    Article  CAS  Google Scholar 

  202. Biggs BS, Frosch CJ, Erickson RH (1946) Melting points of N-substituted polyamids. Ind Eng Chem 38:1016–1019

    CAS  Google Scholar 

  203. Lieser T, Oehlen H (1944) Künstliche organische Hochpolymere II. Über die Polyamidbildung von Piperazin mit aliphatischen Dicarbonsäuren. Justus Liebigs Ann Chem 556:114–126

    CAS  Google Scholar 

  204. Becker HOG (1975) Einführung in die Elektronentheorie organisch-chemischer Reaktionen. Verlag Harri Deutsch, 3.Auflage, Zürich – Frankfurth am Main – Thun

    Google Scholar 

  205. Müller E (1963) Makromolekulare Stoffe Teil 2. Methoden der Organischen Chemie (Houben-Weyl) Bd. XIV/2, 147

    Google Scholar 

  206. Bottenbruch L, Binsack R (1998) Technische thermoplaste polyamide. Kunststoff Handbuch 3/4, Carl Hanserverlag München Wien

    Google Scholar 

  207. Malluche J (2003) Neue Synthesestrategien für teilaromatische Polyamide. Dissertation im Fachbereich Chemie der Technischen Universität Darmstadt

    Google Scholar 

  208. Müller E (1963) Makromolekulare Stoffe Teil 2, Methoden der Organischen Chemie (Houben-Weyl) Bd. XIV/2, 145

    Google Scholar 

  209. Müller E (1963) Makromolekulare Stoffe Teil 2. Methoden der Organischen Chemie (Houben-Weyl) Bd. XIV/2, 101

    Google Scholar 

  210. Foerst W (1953) Adipinsäure. In: Ullmanns Encyklopädie der technischen Chemie, 3. Aufl., 3. Band, 93

    Google Scholar 

  211. Levchik SV, Weil ED, Lewin M (1999) Review thermal decomposition of aliphatic nylons. Polym Int 48:532–557. https://doi.org/10.1002/(SICI)1097-0126(199907)48:7<532::AID-PI214>3.0.CO;2-R

    Article  CAS  Google Scholar 

  212. Wiloth F (1971) Zur thermischen Zersetzung von Nylon 6.6, Messungen zur Thermolyse von Nylon 6.6 und 6.10. Die Makromolekulare Chemie 144:283–307

    CAS  Google Scholar 

  213. Herzog B, Kohan MI, Mestemacher SA, Pagilagan RU, Redmond K (2013) Polyamides. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. https://doi.org/10.1002/14356007.a21_179.pub3

    Chapter  Google Scholar 

  214. Müller E (1963) Makromolekulare Stoffe Teil 2. Methoden der Organischen Chemie (Houben-Weyl) Bd. XIV/2, 119

    Google Scholar 

  215. Elsner P (2012) Polyamide (PA). In: Elsner P, Eyerer P, Hirt T (eds) Kunststoffe, Eigenschaften und Anwendungen. Springer, Heidelberg. https://doi.org/10.1007/978-3-642-16173-5

    Chapter  Google Scholar 

  216. Biron M (2007) Thermoplastics and thermoplastic composites. Elsevier

    Google Scholar 

  217. Oberbach K (2001) Saechtling kunststoff-taschenbuch, 28. Aufl. Carl Hanser Verlag München, Wien

    Google Scholar 

  218. Glasübergangstemperatur KRV. Kunststoffrohrverband e.V., Kennedyallee 1-5, D-53175 Bonn, WIPO Wissensportal. https://www.krv.de/artikel/glasuebergangstemperatur. Accessed 27 Oct 2021

  219. Seite (2021) Polyphthalamide. In: Wikipedia – Die freie Enzyklopädie. Bearbeitungsstand: 2. Februar 2021, 18:34 UTC. https://de.wikipedia.org/w/index.php?title=Polyphthalamide&oldid=208364994. Abgerufen: 27. Oktober 2021, 14:26 UTC

  220. Staab HA (1959) Einführung in die theoretische organische Chemie. Verlag Chemie, Weinheim, p 203

    Google Scholar 

  221. Rilsan® HT. https://web.archive.org/web/20160426104206/http://www.arkema.com/en/products/product-finder/product-viewer/Rilsan-HT/; https://www.resinex.de/produkte/rilsan-ht.html. Accessed 27 Oct 2021

  222. XecoT™ (PA10T). https://www.unitika.co.jp/plastics/e/products/xecot/. Accessed 27 Oct 2021

  223. Winnacker M (2017) Polyamides and their functionalization: recent concepts for their applications as biomaterials. Biomater Sci 5:1230–1235. https://doi.org/10.1039/C7BM00160F

    Article  CAS  PubMed  Google Scholar 

  224. Häger H (2010) VESTAMID Terra, lifecycle assessment of biobased polyamides (Evonik product data sheet). Evonik Degussa GmbH, Marl

    Google Scholar 

  225. DSM, EcoPAXX: the green performer (product data sheet, 2012). DSM Engineering Plastic, Galeen

    Google Scholar 

  226. Genas M (1962) Rilsan® (Polyamide 11) Synthese und Eigenschaften. Angew Chem 74:535–540. https://doi.org/10.1002/ange.19620741504

    Article  CAS  Google Scholar 

  227. Arkema, Rilsan® PA11: created from a renewable source (product data sheet, 2009). Arkema, Puteeaux

    Google Scholar 

  228. https://www.vestamid.com/en/products-services/VESTAMID-L

  229. Bio-sourced materials: a new milestone! https://www.michelin.com/en/news/bio-sourced-materials-a-new-milestone/. Accessed 28 Oct 2021

  230. Niu W, Draths KM, Frost JW (2002) Benzene-free synthesis of adipic acid. Biotechnol Prog 18:201–211. https://doi.org/10.1021/bp010179x

    Article  CAS  PubMed  Google Scholar 

  231. Könst PM, Franssen MCR, Scott EL, Sanders JPM (2011) Stabilization and immobilization of Trypanosoma brucei ornithine carboxylase for the biobased production of 1,4-diaminobutane. Green Chem 13:1167–1174. https://doi.org/10.1039/c0gc00564a

    Article  CAS  Google Scholar 

  232. Scott E, Peter F, Sanders J (2007) Biomass in the manufacture of industrial products—the use of proteins and amino acids. Appl Microbiol Biotechnol 75:751–762. https://doi.org/10.1007/s00253-007-0932-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Buschke N, Becker J, Schäfer R, Kiefer P, Biedendieck R, Wittmann C (2013) Systems metabolic engineering of xylose-utilizing Corynebacterium glutamicum for production of 1,5-diaminopentane. Biotechnol J 8:557–570. https://doi.org/10.1002/biot.201200367

    Article  CAS  PubMed  Google Scholar 

  234. Kind S, Neubauer S, Becker J, Yamamoto M, Volkert M, von Abendroth G, Zelder O, Wittmann C (2014) From zero to hero: production of biobased nylon from renewable resources using engineered Corynebacterium glutamicum. Metab Eng: 25:113-123. http://dx.doi.org/https://doi.org/10.1016/j.ymben.2014.05.007

  235. Wang MS, Huang JC (1994) Nylon 1010 properties and applications. J Polym Eng 13:155–174. https://doi.org/10.1515/POLYENG.1994.13.2.155

    Article  CAS  Google Scholar 

  236. Kuciel S, Kuzniar P, Liber-Knec A (2012) Polyamides from renewable sources as matrices for short fiber reinforced biocomposites. Polimery 57:627–634. https://doi.org/10.14314/polimery.2012.627

    Article  CAS  Google Scholar 

  237. Feldmann M, Bledzki AK (2014) Bio-based polyamides reinforced with cellulosic fibres – processing and properties. Compos Sci Technol 100:113–120. https://doi.org/10.1016/j.compscitech.2014.06.008

    Article  CAS  Google Scholar 

  238. Kim KS, Yu AJ (1979) Copolyamides derived from brassylic acid. J Appl Polym Sci 23:439–444. https://doi.org/10.1002/app.1979.070230213

    Article  CAS  Google Scholar 

  239. Prieto A, Iribaren I, Muñoz-Guerra S (1993) Structural studies of nylon 13,13. J Mater Sci 28:4059–4062. https://doi.org/10.1007/BF00351232

    Article  CAS  Google Scholar 

  240. Coffman DD, Berchet GJ, Peterson WR, Spanagel EW (1947) Polymeric amides from diamines and dibasic acids. J Polym Sci 2:306–313. https://doi.org/10.1002/pol.1947.120020308

    Article  CAS  Google Scholar 

  241. Dreyfuss R (1973) Survey of the long spacing of polyamides crystallized from solution. J Poly Sci Polym Phys Ed 11:201–216. https://doi.org/10.1002/pol.1973.180110202

    Article  CAS  Google Scholar 

  242. Beaman RG, Morgan PW, Koller CR, Wittbecker EL, Magat EE (1959) Interfacial polymerization: III. Polyamides. J Polym Sci 50:329–336. https://doi.org/10.1002/pol.1959.1204013703

    Article  Google Scholar 

  243. Wang Q, Shao Z, Yu T (1996) The synthesis and characterization of polyethylene succinamide (polyamide 24). Polym Bull 36:659–665

    CAS  Google Scholar 

  244. Gaymans RJ, Venkatraman VS, Schuijer T (1984) Preparation and some properties of Nylon-4,2. J Polym Sci Polym Chem Ed 22:1373–1382

    CAS  Google Scholar 

  245. Carothers WE (1938) Synthetic fiber US patent 2,130,948, E. I. du Pont de Nemours & Company

    Google Scholar 

  246. Gaymans RJ, van Utteren TEC, van den Berg JWA, Schuyer J (1977) Preparation and some properties of nylon 46. J Polym Sci Polym Chem Int 15:537–545. https://doi.org/10.1002/pol.1977.170150303

    Article  CAS  Google Scholar 

  247. Kawasaki N, Nakayama A, Yamano N, Takeda S, Kawata Y, Yamamoto N, Aiba SI (2005) Synthesis, thermal and mechanical properties and biodegradation of branched polyamide 4. Polymer 46:9987–9993. https://doi.org/10.1016/j.polymer.2005.06.092

    Article  CAS  Google Scholar 

  248. Saskiawan I (2008) Biosynthesis of polyamide 4, a biobased and biodegradable polymer. Microbiol Indones 2:119–123. https://doi.org/10.5454/mi.2.3.5

    Article  Google Scholar 

  249. Türünç O, Firdaus M, Klein G, Meier MAR (2012) Fatty-acid derived renewable polyamides via thiolene additions. Green Chem 14:2577–2583. https://doi.org/10.1039/C2GC35982K

    Article  Google Scholar 

  250. Graça J, Santos S (2006) Linear aliphatic dimeric esters from Cork Suberin. Biomacromolecules 7:2003–2010. https://doi.org/10.1021/bm060174u

    Article  CAS  PubMed  Google Scholar 

  251. Eschenfeldt WH, Zhang Y, Samaha H, Stols L, Eirich LD, Wilson CR, Donnelly MI (2003) Transformation of fatty acids catalyzed by cytochrome P450 monooxygenase enzymes of Candida tropicalis. Appl Environ Microbiol 69:5992–5999. https://doi.org/10.1128/AEM.69.10.5992-5999.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Pardal F, Salhi S, Rousseau B, Tessier M, Claude S, Fradet A (2008) Unsaturated polyamides from biobased Z-octadec-9-enedioc acid. Macromol Chem Phys 209:64–74. https://doi.org/10.1002/macp.200700319

    Article  CAS  Google Scholar 

  253. Bennett C, Mathias LJ (2004) Linear unsaturated polyamides: nylons 6 u18 and 18 u18. Macromol Chem Phys 205:2438–2442. https://doi.org/10.1002/macp.200400351

    Article  CAS  Google Scholar 

  254. Bennett C, Mathias LJ (2005) Synthesis and characterization of polyamides containing octadecanedioic acid: Nylon-2,18, Nylon-3,18, Nylon-4,18, Nylon-6,18, Nylon-8,18, Nylon-9,18, and Nylon 12,18. J Polym Sci Part A Polym Chem 43:936–945. https://doi.org/10.1002/pola.20550

    Article  CAS  Google Scholar 

  255. Cui X, Li W, Yan D, Yuan C, Di Silvestro G (2005) Synthesis and characterization of polyamides X 18. J Appl Polym Sci 98:1565–1571. https://doi.org/10.1002/app.22160

    Article  CAS  Google Scholar 

  256. Schuttenberg H, Schulz RC (1976) Trifluoracetylierung von Aminen mit N-Trifluoracetyl-Nylon 66. Angew Chem 88:848–849. https://doi.org/10.1002/ange.19760882411

    Article  CAS  Google Scholar 

  257. Mutlu H, Meier MAR (2009) Unsaturated PA X,20 from renewable resources via metathesis and catalytic amidation. Macromol Chem Phys 210:1019–1025. https://doi.org/10.1002/macp.200900045

    Article  CAS  Google Scholar 

  258. Winkler M, Meier MAR (2014) Olefin cross-metathesis as a valuable tool for the preparation of renewable polyesters and polyamides from unsaturated fatty-acid esters and carbamates. Green Chem 16:3335–3340. https://doi.org/10.1039/C4GC00273C

    Article  CAS  Google Scholar 

  259. Stempfle F, Quinzler D, Heckler I, Mecking S (2011) Long-chain linear C19 and C23 monomers and polycondensates from unsaturated fatty acid esters. Macromolecules 44:4159–4166. https://doi.org/10.1021/ma200627e

    Article  CAS  Google Scholar 

  260. Winkler M, Steinbiß S, Meier MAR (2014) A more sustainable Wohl-Ziegler bromination: versatile derivatization of unsaturated FAMEs and synthesis of renewable polyamides. Eur J Lipid Sci Technol 116:44–51. https://doi.org/10.1002/ejlt.201300126

    Article  CAS  Google Scholar 

  261. Winkler M, Meier MAR (2014) Highly efficient oxyfunctionalization of unsaturated fatty-acid esters: an attractive route for the synthesis of polyamides from renewable resources. Green Chem 16:1784–1788. https://doi.org/10.1039/C3GC41921E

    Article  CAS  Google Scholar 

  262. Walther G, Deutsch J, Martin A, Baumann FE, Fridag D, Franke R, Köckritz A (2011) α,ω-functionalized C19 monomer. ChemSusChem 4:1052-1054. http://dx.doi.org/https://doi.org/10.1002/cssc.201100187

  263. Heidarian N, Ghasem NM, Daud WMAW (2004) Study on kinetics of polymerization of dimer fatty acids with ethylene diamine in the presence of catalyst. Chem Eng J 100:85–93. https://doi.org/10.1016/j.cej.2004.01.010

    Article  CAS  Google Scholar 

  264. Hablot E, Donnio B, Bouquey M, Avérous L (2010) Dimer-acid based thermoplastic biopolyamides: reaction kinetics, properties and structure. Polymer 51:5895–5902. https://doi.org/10.1016/j.polymer.2010.10.026

    Article  CAS  Google Scholar 

  265. Çavuş S, Gürkaynak A (2006) Influence of monofunctional reactants on the physical properties of dimer-acid based polyamides. Polym Adv Technol 17:30–36. https://doi.org/10.1002/pat.694

    Article  CAS  Google Scholar 

  266. Chen X, Zhong H, Jia L, Ning J, Tang R, Qiao J, Zhang Z (2002) Polyamides derived from piperazine and used for hot-melt adhesives: synthesis and properties. Int J Adhes Adhes 22:75–79. https://doi.org/10.1016/S0143-7496(01)00039-2

    Article  Google Scholar 

  267. García JM, García FC, Serna F, de la Peña JL (2010) High-performance aromatic polyamides. Prog Polym Sci 35:623–686. https://doi.org/10.1016/j.progpolymsci.2009.09.002

    Article  CAS  Google Scholar 

  268. Sousa AF, Vilela C, Fonseca AC, Matos M, Freire CSR, Gruter GJM, Coelho JFJ, Silvestre AJD (2015) Biobased polyesters and other polymers from 2,5-furandicarboxylic acid: a tribute to furan excellency. Polym Chem 6:5961–5983. https://doi.org/10.1039/C5PY00686D

    Article  CAS  Google Scholar 

  269. Jiang Y, Maniar D, Woortman AJJ, Alberda van Ekenstein GOR, Loos K (2015) Enzymatic polymerization of furan-2,5-dicarboxylic acid-based furanic-aliphatic polyamides as sustainable alternatives to polyphtalamides. Biomacromolecules 16:3674–3685. https://doi.org/10.1021/acs.biomac.5b01172

    Article  CAS  PubMed  Google Scholar 

  270. Grosshardt O, Fehrenbacher U, Kowollik K, Tübke B, Dingenouts N, Wilhelm M (2009) Synthese und Charakterisierung von Polyestern und Polyamiden auf der Basis von Furan-2,5-dicarbonsäure. Chem Ing Tech 81:1829–1835. https://doi.org/10.1002/cite.200900090

    Article  CAS  Google Scholar 

  271. Geilen FMA, Engendahl B, Harwardt A, Marquardt W, Klankermayer J, Leitner W (2010) Selective and flexible transformation of biomass-derived platform chemicals by a multifunctional catalytic system. Angew Chem Int Ed 49:5510–5514. https://doi.org/10.1002/anie.201002060

    Article  CAS  Google Scholar 

  272. Lewkowski J (2001) Synthesis, chemistry and applications of 5-hydroxymethylfurural and its derivatives. ARKIVOC 1:17–54. https://doi.org/10.3998/ark.5550190.0002.102

    Article  Google Scholar 

  273. Zhang Z, Deng K (2015) Recent advances in the catalytic synthesis of 2,5-furandicarboxylic acid and its derivatives. ACS Catal 5:6529–6544. https://doi.org/10.1021/acscatal.5b01491

    Article  CAS  Google Scholar 

  274. Hopff VH, Krieger A (1961) Über Polyamide Aus Heterocyclischen Dicarbonsäuren. Makromol Chem 47:93

    CAS  Google Scholar 

  275. Smith D, Flores J, Aberson R, Dam MA, Duursma A, Gruter DJM (2015) Polyamides containing the bio-based 2,5-furandicarboxylic acid, WO2015059047. Solvay Special Polymers

    Google Scholar 

  276. Duursma A, Aberson R, Smith D, Flores J, Dam MA, Gruter GJM (2014) Process for preparing a furan-based polyamide, furan-based oligomer and compositions and articles comprising the furan-based polyamide, WO2015060718. Furanix Technologies BV

    Google Scholar 

  277. Yeh IC, Rinderspacher BC, Andzelm JW, Cureton LT, La Scala J (2014) Computational study of thermal and mechanical properties of nylons and bio-based furan polyamides. Polymer 55:166–174. https://doi.org/10.1016/j.polymer.2013.11.009

    Article  CAS  Google Scholar 

  278. Mitiakoudis A, Gandini A (1988) Poly(p-phenylene-2,5-furandicarbonamide) and anisotropic solutions thereof, their conversion into filaments and films, EP0256606. Stamicarbon BV

    Google Scholar 

  279. Russo M (1975) New heterocyclic polyamides with high heat resistance and mechanical strength. Kunststoffe 65:346

    CAS  Google Scholar 

  280. Benecke HP, Kawczak AW, Garbark DB (2010) Furanic-modified amine-based curatives. US20100280186A1

    Google Scholar 

  281. Benecke HP, Kawczak AW, Garbark DB (2008) Furanic-modified amine-based curatives, US20080207847A1. Battelle Memorial Institute

    Google Scholar 

  282. Credali L, Guidotti V (1978) Polymeric piperazinamides and membranes for reverse osmosis made therefrom, US4123424. Montedison S.p.A

    Google Scholar 

  283. Mitiakoudis A, Gandini A, Cheradame H (1985) Polyamides containing furanic moieties. Polym Commun 26:246–249

    CAS  Google Scholar 

  284. Muños-Guerra S (2012) Carbohydrate-based polyamides and polyesters: an overview illustrated with two selected examples. High Perform Polym 24:9–23. https://doi.org/10.1177/0954008311429502

    Article  CAS  Google Scholar 

  285. Thiyagarian S, Gootjes L, Vogelzang W, Wu J, van Haveren J, van Es DS (2011) Chiral building blocks from biomass: 2,5-diamino-2,5-dideoxy-1,4-3,6-dianhydroiditol. Tetrahedron 67:383–389. https://doi.org/10.1016/j.tet.2010.11.031

    Article  CAS  Google Scholar 

  286. Wu J, Eduard P, Thiyagarajan S, van Haveren J, van Es DS, Koning CE, Lutz M, Guerra CF (2011) Isohexide derivatives from renewable resources as chiral building blocks. ChemSusChem 4:599–603. https://doi.org/10.1002/cssc.201100076

    Article  CAS  PubMed  Google Scholar 

  287. Varela O, Orgueira HA (2000) Advances in carbohydrate chemistry and biochemisty, vol 55. Elsevier, Amsterdam, pp 137–174

    Google Scholar 

  288. Jasinska L, Villani M, Wu J, van Es D, Klop E, Rastogi S, Koning CE (2011) Novel, fully biobased semicrysltalline polyamides. Macromolecules 44:3458–3466. https://doi.org/10.1021/ma200256v

    Article  CAS  Google Scholar 

  289. Jasinska-Walc L, Villani M, Dudenko D, Van Asselen O, Klop E, Rastogi S, Hansen MR, Koning CE (2012) Local conformation and cocrystallization phenomena in renewable diaminoisoidide-based polyamides. Studied by FT-IR, solid-state NMR, and WAXD. Macromolecules 45:2796–2808. https://doi.org/10.1021/ma300133d

    Article  CAS  Google Scholar 

  290. Jasinska-Walc L, Dudenko D, Rozanski A, Thiyagarian S, Sowinski P, van Es D, Shu J, Hansen MR, Koning CE (2012) Structure and molecular dynamics in renewable polyamides from dideoxy-diamino isohexide. Macromolecules 45:5653–5666. https://doi.org/10.1021/ma301091a

    Article  CAS  Google Scholar 

  291. Wu J, Jasinska-Walc L, Dudenko D, Rozanski A, Hansen MR, van Es D, Koning CE (2012) An investigation of polyamides based on isoidide-2,5-dimethyleneamine as a green rigid building block with enhanced reactivity. Macromolecules 45:9333–9346. https://doi.org/10.1021/ma302126b

    Article  CAS  Google Scholar 

  292. Bou JJ, Rodriguez-Galán A, Munoz-Guerra S (1993) Optically active polyamides derived from L-tartaric acid. Macromolecules 26:5664–5670. https://doi.org/10.1021/ma00073a020

    Article  CAS  Google Scholar 

  293. Kiely DE, Chen L, Lin TH (2000) Synthetic polyhydroxypolyamides from galactaric, xylaric, D-Glucaric and D-Mannaric acids and alkylene diamine monomers – some comparisons. J Polym Sci Part A Polym Chem 38:594–603. https://doi.org/10.1002/(SICI)1099-0518(20000201)38:3%3C594::AID-POLA24%3E3.0.CO;2-%23

    Article  CAS  Google Scholar 

  294. Muñoz-Guerra S, Fernández CE, Benito E, Marín R, García-Martin MG, Bermúdez M, Galbis JA (2009) Crystalline structure and crystallization of stereoisomeric polyamides derived from arabinric acid. Polymer 50:2048–2057. https://doi.org/10.1016/j.polymer.2009.02.014

    Article  CAS  Google Scholar 

  295. García-Martín MG, Hernández EB, Pérez RR, Galbis JA (2008) Hydrolytic degradation of carbohydrate-based polyamides of the AABB type derived from l-arabinose and d-xylose. Polym Degrad Stab 93:1370–1375. https://doi.org/10.1016/j.polymdegradstab.2008.03.027

    Article  CAS  Google Scholar 

  296. Wiemann LO, Sieber V (2014/2015) Fraunhofer IGB annual report. Fraunhofer Verlag, Stuttgart, p 90

    Google Scholar 

  297. Katsarava RD (2003) Active polycondensation: from peptide chemistry to amino acid based biodegradable polymers. Macromol Symp 199:419–429. https://doi.org/10.1002/masy.200350935

    Article  CAS  Google Scholar 

  298. Kim SJ, Kim BJ, Jang DW, Kim SH, Park SY, Lee JH, Lee SD, Choi DH (2001) Photoactive polyamideimides synthesized by the polycondensation of azo-dye diamines and rosin derivative. J Appl Polym Sci 79:687–695. https://doi.org/10.1002/1097-4628(20010124)79:4%3C687::AID-APP130%3E3.0.CO;2-9

    Article  CAS  Google Scholar 

  299. Atta AM, Mansour R, Abdou MI, Sayed AM (2004) Epoxy resins from rosin acids: synthesis and characterization. Polym Adv Technol 15:514–522. https://doi.org/10.1002/pat.507

    Article  CAS  Google Scholar 

  300. Firdaus M, Meier MAR (2013) Renewable polyamides and polyurethanes derived from limonene. Green Chem 15:370–380. https://doi.org/10.1039/C2GC36557J

    Article  CAS  Google Scholar 

  301. Paschke E (2012) Biobased polyamides WO2012082727A1. Amyris Inc

    Google Scholar 

  302. Frost CW. US Patent 7399855B2

    Google Scholar 

  303. Dolduras GA, Kollonitsch J (1978) A direct, selective and general method for reductive deamination of primary amines. J Am Chem Soc 100:341–342. https://doi.org/10.1021/ja00469a088

    Article  Google Scholar 

  304. Hall HK (1963) Synthesis and polymerisation of 3-azabicyclo[4.3.1]decan-4-one and 7,7-dimethyl-2-azabicyclo[4.1.1]octan-3-one. J Org Chem 28:3213–3214

    CAS  Google Scholar 

  305. Winnacker M, Vagin S, Auer V, Rieger B (2014) Synthesis of novel sustainable oligoamides via ring-opening polymerization of lactams based on (-)-menthone. Macromol Chem Phys 215:1654–1660. https://doi.org/10.1002/macp.201400324

    Article  CAS  Google Scholar 

  306. Crawford C, Todd EM (2011) Presented at 241st ACS national meeting & exposition, Anaheim, CA

    Google Scholar 

  307. Komatsu N, Simizu S, Sugita T (1992) A reinvestigation of the Beckmann rearrangement of (-)-menthone oxime: preparation of (+)-(3S, 6R)-3-isopropy-6-methylhexahydroazepin-2-one. Synth Commun 22:277–279

    CAS  Google Scholar 

  308. Imoto M, Sakurai H, Kono T (1961) Optically active polymers. I. Polymerization of 4-methyl-7-isopropyl-2-oxohexamethyleneimine. J Polym Sci 50:467–473

    CAS  Google Scholar 

  309. Winnacker M, Rieger B (2015) Recent progress in sustainable polymers obtained from cyclic terpenes: synthesis, properties, and application potential. ChemSusChem 8:2455–2471. https://doi.org/10.1002/cssc.201500421

    Article  CAS  PubMed  Google Scholar 

  310. Winnacker M, Neumeier M, Zhang X, Papadakis CM, Rieger B (2016) Sustainable chrial polyamides with high melting temperature via enhanced anionic polymerization of a menthone-derived lactam. Macromol Rapid Commun 37:851–857. https://doi.org/10.1002/marc.201600056

    Article  CAS  PubMed  Google Scholar 

  311. Winnacker M, Sag J, Tischner A, Rieger B (2017) Sustainable, stereoregular and optically active polyamides via cationic polymerization of e-lactams derived from the terpene b-pinene. Macromol Rapid Commun 38:1600787. https://doi.org/10.1002/marc.201600787

    Article  CAS  Google Scholar 

  312. Winnacker M, Tischner A, Neumeier M, Rieger B (2015) New insights into synthesis and oligomerization of ε-lactams derived from the terpenoid ketone (-)-menthone. RSC Adv 5:77699–77705. https://doi.org/10.1039/c5ra15656d

    Article  CAS  Google Scholar 

  313. Winnacker M, Lamparelli DH, Capacchione C, Güngör HH, Stieglitz L, Rodewald KS, Schmidt M, Gronauer T (2020) Sustainable polyesteramides and copolyamides: insights into the copolymerization behavior of terpene-based lactams. Macromol Chem Phys 221:2000110. https://doi.org/10.1002/macp.202000110

    Article  CAS  Google Scholar 

  314. Winnacker M, Kleybolte MM (2021) b-Pinene-derived polyesteramides and their blends: advances in their upscaling, processing, and characterization. Macromol Rapid Commun 42:2100065. https://doi.org/10.1002/marc.202100065

    Article  CAS  Google Scholar 

  315. Kondelíková J, Sejba J, Cerny Z, Králicek J (1980) Copolymerization of lactams with different polymerization abilities. Makromol Chem Rapid Commun 1:35–39. https://doi.org/10.1002/marc.1980.030010108

    Article  Google Scholar 

  316. Kumar N, Nepali K, Sapra S, Bijjem KRV, Kumar R, Suri OP, Dhar KL (2012) Effect of nitrogen insertion on the antitussive properties of menthol and camphor. Med Chem Res 21:531–537. https://doi.org/10.1007/s00044-011-9560-1

    Article  CAS  Google Scholar 

  317. Stockmann PN, van Opdenbosch D, Poethig A, Pastoetter DL, Hoehenberger M, Lessig S, Raab J, Woelbing M, Falcke C, Winnacker M, Zollfrank C, Strittmatter H, Sieber V (2020) Biobased chiral semi-crystalline or amorphous high-performance polyamides and their scalable stereoselective synthesis. Nat Commun 11:509. https://doi.org/10.1038/s41467-020-14361-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  318. Stockmann PN, Pastoetter DL, Woelbing M, Falcke C, Winnacker M, Strittmatter H, Sieber V (2019) New biopolyamides from terpenes: a-Pinene and (+)-3-carene as valuable resources for lactam production. Macromol Rapid Commun 40:1800903. https://doi.org/10.1002/marc.201800903

    Article  CAS  Google Scholar 

  319. Strittmatter H, Falcke C, Wölbing M, Sieber V (2014/2015) Fraunhoher IGB annual report. Fraunhofer Verlag, Mediendienstleistungen, Stuttgart, pp 92–93

    Google Scholar 

  320. Strittmatter H, Pastötter D, Stockmann P, Sieber V (2015/2016) Fraunhofer IGB annual report. Fraunhofer Verlag, Mediendienstleistungen, Stuttgart, pp 92–93

    Google Scholar 

  321. https://www.basf.com/global/en/products/segments/nutrition_and_care/nutrition_and_health/aroma-ingredients/our-product-range/mint.html. Accessed Jul 2021

  322. Muelhaupt R (2013) Green polymer chemistry and biobased plastics: dreams and reality. Macromol Chem Phys 214:159–174. https://doi.org/10.1002/macp.201200439

    Article  CAS  Google Scholar 

  323. Schaub T (2021) Efficient industrial organic synthesis and the principles of green chemistry. Chem Eur J 27:1865–1869. https://doi.org/10.1002/chem.202003544

    Article  CAS  PubMed  Google Scholar 

  324. Wikipedia Contributors (2021) Food vs. fuel. In: Wikipedia. The free encyclopedia. https://en.wikipedia.org/w/index.php?title=Food_vs._fuel&oldid=1048932750. Accessed 11 Oct 2021

  325. Gonzáles V, Guerrero C, Ortiz U (2000) Chemical structure and compatibility of polyamide–chitin and chitosan blends. J Appl Polym Sci 78:850–857. https://doi.org/10.1002/1097-4628(20001024)78:4<850::AID-APP190>3.0.CO;2-N

    Article  Google Scholar 

Download references

Acknowledgements

The original research of M.W. on biobased polyamides, especially those that are derived from terpenes, has been funded (and is funded at this time of writing this article) by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under the Project Number 445011287. This funding is gratefully acknowledged. M.W. is also thankful to the TU München for general support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Frank Weinelt or Malte Winnacker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ullrich, M., Weinelt, F., Winnacker, M. (2022). Biobased Polyamides: Academic and Industrial Aspects for Their Development and Applications. In: Künkel, A., Battagliarin, G., Winnacker, M., Rieger, B., Coates, G. (eds) Synthetic Biodegradable and Biobased Polymers. Advances in Polymer Science, vol 293. Springer, Cham. https://doi.org/10.1007/12_2021_112

Download citation

Publish with us

Policies and ethics