Skip to main content

Acquired Genetic and Epigenetic Variation in Human Pluripotent Stem Cells

  • Chapter
  • First Online:
Engineering and Application of Pluripotent Stem Cells

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 163))

Abstract

Human pluripotent stem cells (hPSCs) can acquire non-random genomic variation during culture. Some of these changes are common in tumours and confer a selective growth advantage in culture. Additionally, there is evidence that reprogramming of human induced pluripotent stem cells (hiPSCs) introduces mutations. This poses a challenge to both the safety of clinical applications and the reliability of basic research using hPSCs carrying genomic variation. A number of methods are available for monitoring the genomic integrity of hPSCs, and a balance between practicality and sensitivity must be considered in choosing the appropriate methods for each use of hPSCs. Adjusting protocols by which hPSCs are derived and cultured is an evolving process that is important in minimising acquired genomic variation. Assessing genetic variation for its potential impact is becoming increasingly important as techniques to detect genome-wide variation improve.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

aCGH:

array comparative genome hybridisation

CNV:

Copy number variation

FISH:

Fluorescent in situ hybridisation

hESC:

Human embryonic stem cell

hiPSC:

Human induced pluripotent stem cell

hPSC:

Human pluripotent stem cell

NGS:

Next-generation sequencing

qPCR:

Quantitative polymerase chain reaction

SNP:

Single nucleotide polymorphism

TGCT:

Testicular germ cell tumour

References

  1. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872

    Article  CAS  Google Scholar 

  2. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147

    Article  CAS  Google Scholar 

  3. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920

    Article  CAS  Google Scholar 

  4. Soldner F, Hockemeyer D, Beard C, Gao Q, Bell GW, Cook EG, Hargus G, Blak A, Cooper O, Mitalipova M, Isacson O, Jaenisch R (2009) Parkinson’s disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell 136:964–977

    Article  CAS  Google Scholar 

  5. Perrier AL, Tabar V, Barberi T, Rubio ME, Bruses J, Topf N, Harrison NL, Studer L (2004) Derivation of midbrain dopamine neurons from human embryonic stem cells. Proc Natl Acad Sci U S A 101:12543–12548

    Article  CAS  Google Scholar 

  6. Kriks S, Shim JW, Piao J, Ganat YM, Wakeman DR, Xie Z, Carrillo-Reid L, Auyeung G, Antonacci C, Buch A, Yang L, Beal MF, Surmeier DJ, Kordower JH, Tabar V, Studer L (2011) Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson’s disease. Nature 480:547–551

    Article  CAS  Google Scholar 

  7. Itzhaki I, Maizels L, Huber I, Zwi-Dantsis L, Caspi O, Winterstern A, Feldman O, Gepstein A, Arbel G, Hammerman H, Boulos M, Gepstein L (2011) Modelling the long QT syndrome with induced pluripotent stem cells. Nature 471:225–229

    Article  CAS  Google Scholar 

  8. Andrews PW (2002) From teratocarcinomas to embryonic stem cells. Philos Trans R Soc Lond Ser B Biol Sci 357:405–417

    Article  Google Scholar 

  9. Rehen SK, Yung YC, Mccreight MP, Kaushal D, Yang AH, Almeida BS, Kingsbury MA, Cabral KM, Mcconnell MJ, Anliker B, Fontanoz M, Chun J (2005) Constitutional aneuploidy in the normal human brain. J Neurosci 25:2176–2180

    Article  CAS  Google Scholar 

  10. Peterson SE, Westra JW, Rehen SK, Young H, Bushman DM, Paczkowski CM, Yung YC, Lynch CL, Tran HT, Nickey KS, Wang YC, Laurent LC, Loring JF, Carpenter MK, Chun J (2011) Normal human pluripotent stem cell lines exhibit pervasive mosaic aneuploidy. PLoS One 6:e23018

    Article  CAS  Google Scholar 

  11. Draper JS, Smith K, Gokhale P, Moore HD, Maltby E, Johnson J, Meisner L, Zwaka TP, Thomson JA, Andrews PW (2004) Recurrent gain of chromosomes 17q and 12 in cultured human embryonic stem cells. Nat Biotechnol 22:53–54

    Article  CAS  Google Scholar 

  12. Amps K, Andrews PW, Anyfantis G, Armstrong L, Avery S, Baharvand H, Baker J, Baker D, Munoz MB, Beil S, Benvenisty N, Ben-Yosef D, Biancotti JC, Bosman A, Brena RM, Brison D, Caisander G, Camarasa MV, Chen J, Chiao E, Choi YM, Choo AB, Collins D, Colman A, Crook JM, Daley GQ, Dalton A, de Sousa PA, Denning C, Downie J, Dvorak P, Montgomery KD, Feki A, Ford A, Fox V, Fraga AM, Frumkin T, Ge L, Gokhale PJ, Golan-Lev T, Gourabi H, Gropp M, Lu G, Hampl A, Harron K, Healy L, Herath W, Holm F, Hovatta O, Hyllner J, Inamdar MS, Irwanto AK, Ishii T, Jaconi M, Jin Y, Kimber S, Kiselev S, Knowles BB, Kopper O, Kukharenko V, Kuliev A, Lagarkova MA, Laird PW, Lako M, Laslett AL, Lavon N, Lee DR, Lee JE, Li C, Lim LS, Ludwig TE, Ma Y, Maltby E, Mateizel I, Mayshar Y, Mileikovsky M, Minger SL, Miyazaki T, Moon SY, Moore H, Mummery C, Nagy A, Nakatsuji N, Narwani K, Oh SK, Olson C, Otonkoski T, Pan F, Park IH, Pells S, Pera MF, Pereira LV, Qi O, Raj GS, Reubinoff B, Robins A, Robson P, Rossant J, Salekdeh GH, Schulz TC et al (2011) Screening ethnically diverse human embryonic stem cells identifies a chromosome 20 minimal amplicon conferring growth advantage. Nat Biotechnol 29:1132–1144

    Article  CAS  Google Scholar 

  13. Baker DE, Harrison NJ, Maltby E, Smith K, Moore HD, Shaw PJ, Heath PR, Holden H, Andrews PW (2007) Adaptation to culture of human embryonic stem cells and oncogenesis in vivo. Nat Biotechnol 25:207–215

    Article  CAS  Google Scholar 

  14. Cowan CA, Klimanskaya I, Mcmahon J, Atienza J, Witmyer J, Zucker JP, Wang S, Morton CC, Mcmahon AP, Powers D, Melton DA (2004) Derivation of embryonic stem-cell lines from human blastocysts. N Engl J Med 350:1353–1356

    Article  CAS  Google Scholar 

  15. Mitalipova MM, Rao RR, Hoyer DM, Johnson JA, Meisner LF, Jones KL, Dalton S, Stice SL (2005) Preserving the genetic integrity of human embryonic stem cells. Nat Biotechnol 23:19–20

    Article  CAS  Google Scholar 

  16. Mayshar Y, Ben-David U, Lavon N, Biancotti JC, Yakir B, Clark AT, Plath K, Lowry WE, Benvenisty N (2010) Identification and classification of chromosomal aberrations in human induced pluripotent stem cells. Cell Stem Cell 7:521–531

    Article  CAS  Google Scholar 

  17. Laurent LC, Ulitsky I, Slavin I, Tran H, Schork A, Morey R, Lynch C, Harness JV, Lee S, Barrero MJ, Ku S, Martynova M, Semechkin R, Galat V, Gottesfeld J, Izpisua Belmonte JC, Murry C, Keirstead HS, Park HS, Schmidt U, Laslett AL, Muller FJ, Nievergelt CM, Shamir R, Loring JF (2011) Dynamic changes in the copy number of pluripotency and cell proliferation genes in human ESCs and iPSCs during reprogramming and time in culture. Cell Stem Cell 8:106–118

    Article  CAS  Google Scholar 

  18. Avery S, Hirst AJ, Baker D, Lim CY, Alagaratnam S, Skotheim RI, Lothe RA, Pera MF, Colman A, Robson P, Andrews PW, Knowles BB (2013) BCL-XL mediates the strong selective advantage of a 20q11.21 amplification commonly found in human embryonic stem cell cultures. Stem Cell Rep 1:379–386

    Article  CAS  Google Scholar 

  19. Fialkow PJ, Jacobson RJ, Papayannopoulou T (1977) Chronic myelocytic leukemia: clonal origin in a stem cell common to the granulocyte, erythrocyte, platelet and monocyte/macrophage. Am J Med 63:125–130

    Article  CAS  Google Scholar 

  20. Bosl GJ, Dmitrovsky E, Reuter VE, Samaniego F, Rodriguez E, Geller NL, Chaganti RS (1989) Isochromosome of the short arm of chromosome 12: clinically useful markers for male germ cell tumors. J Natl Cancer Inst 81:1874–1878

    Article  CAS  Google Scholar 

  21. Desmarais JA, Hoffmann MJ, Bingham G, Gagou ME, Meuth M, Andrews PW (2012) Human embryonic stem cells fail to activate CHK1 and commit to apoptosis in response to DNA replication stress. Stem Cells 30:1385–1393

    Article  CAS  Google Scholar 

  22. Blum B, Bar-Nur O, Golan-Lev T, Benvenisty N (2009) The anti-apoptotic gene survivin contributes to teratoma formation by human embryonic stem cells. Nat Biotechnol 27:281–287

    Article  CAS  Google Scholar 

  23. Mitsui K, Tokuzawa Y, Itoh H, Segawa K, Murakami M, Takahashi K, Maruyama M, Maeda M, Yamanaka S (2003) The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113:631–642

    Article  CAS  Google Scholar 

  24. Ferguson-Smith AC (2011) Genomic imprinting: the emergence of an epigenetic paradigm. Nat Rev Genet 12:565–575

    Article  CAS  Google Scholar 

  25. Butler MG (2009) Genomic imprinting disorders in humans: a mini-review. J Assist Reprod Genet 26:477–486

    Article  Google Scholar 

  26. Humpherys D, Eggan K, Akutsu H, Hochedlinger K, Rideout WM, Biniszkiewicz D, Yanagimachi R, Jaenisch R (2001) Epigenetic instability in ES cells and cloned mice. Science 293:95–97

    Article  CAS  Google Scholar 

  27. Rugg-Gunn PJ, Ferguson-Smith AC, Pedersen RA (2005) Epigenetic status of human embryonic stem cells. Nat Genet 37:585–587

    Article  CAS  Google Scholar 

  28. Allegrucci C, Wu YZ, Thurston A, Denning CN, Priddle H, Mummery CL, Ward-van Oostwaard D, Andrews PW, Stojkovic M, Smith N, Parkin T, Jones ME, Warren G, Yu L, Brena RM, Plass C, Young LE (2007) Restriction landmark genome scanning identifies culture-induced DNA methylation instability in the human embryonic stem cell epigenome. Hum Mol Genet 16:1253–1268

    Article  CAS  Google Scholar 

  29. Rugg-Gunn PJ, Ferguson-Smith AC, Pedersen RA (2007) Status of genomic imprinting in human embryonic stem cells as revealed by a large cohort of independently derived and maintained lines. Hum Mol Genet 16(Spec 2):R243–R251

    Article  CAS  Google Scholar 

  30. Nazor KL, Altun G, Lynch C, Tran H, Harness JV, Slavin I, Garitaonandia I, Müller FJ, Wang YC, Boscolo FS, Fakunle E, Dumevska B, Lee S, Park HS, Olee T, D’lima DD, Semechkin R, Parast MM, Galat V, Laslett AL, Schmidt U, Keirstead HS, Loring JF, Laurent LC (2012) Recurrent variations in DNA methylation in human pluripotent stem cells and their differentiated derivatives. Cell Stem Cell 10:620–634

    Article  CAS  Google Scholar 

  31. Mekhoubad S, Bock C, De Boer AS, Kiskinis E, Meissner A, Eggan K (2012) Erosion of dosage compensation impacts human iPSC disease modeling. Cell Stem Cell 10:595–609

    Article  CAS  Google Scholar 

  32. Taapken SM, Nisler BS, Newton MA, Sampsell-Barron TL, Leonhard KA, Mcintire EM, Montgomery KD (2011) Karotypic abnormalities in human induced pluripotent stem cells and embryonic stem cells. Nat Biotechnol 29:313–314

    Article  CAS  Google Scholar 

  33. Hacein-Bey-Abina S, Von Kalle C, Schmidt M, Mccormack MP, Wulffraat N, Leboulch P, Lim A, Osborne CS, Pawliuk R, Morillon E, Sorensen R, Forster A, Fraser P, Cohen JI, de Saint Basile G, Alexander I, Wintergerst U, Frebourg T, Aurias A, Stoppa-Lyonnet D, Romana S, Radford-Weiss I, Gross F, Valensi F, Delabesse E, Macintyre E, Sigaux F, Soulier J, Leiva LE, Wissler M, Prinz C, Rabbitts TH, Le Deist F, Fischer A, Cavazzana-Calvo M (2003) LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 302:415–419

    Article  CAS  Google Scholar 

  34. Yu J, Hu K, Smuga-Otto K, Tian S, Stewart R, Slukvin II, Thomson JA (2009) Human induced pluripotent stem cells free of vector and transgene sequences. Science 324:797–801

    Article  CAS  Google Scholar 

  35. Hussein SM, Batada NN, Vuoristo S, Ching RW, Autio R, Narva E, Ng S, Sourour M, Hamalainen R, Olsson C, Lundin K, Mikkola M, Trokovic R, Peitz M, Brustle O, Bazett-Jones DP, Alitalo K, Lahesmaa R, Nagy A, Otonkoski T (2011) Copy number variation and selection during reprogramming to pluripotency. Nature 471:58–62

    Article  CAS  Google Scholar 

  36. Ruiz S, Lopez-Contreras AJ, Gabut M, Marion RM, Gutierrez-Martinez P, Bua S, Ramirez O, Olalde I, Rodrigo-Perez S, Li H, Marques-Bonet T, Serrano M, Blasco MA, Batada NN, Fernandez-Capetillo O (2015) Limiting replication stress during somatic cell reprogramming reduces genomic instability in induced pluripotent stem cells. Nat Commun 6:8036

    Article  CAS  Google Scholar 

  37. Gore A, Li Z, Fung HL, Young JE, Agarwal S, Antosiewicz-Bourget J, Canto I, Giorgetti A, Israel MA, Kiskinis E, Lee JH, Loh YH, Manos PD, Montserrat N, Panopoulos AD, Ruiz S, Wilbert ML, Yu J, Kirkness EF, Izpisua Belmonte JC, Rossi DJ, Thomson JA, Eggan K, Daley GQ, Goldstein LS, Zhang K (2011) Somatic coding mutations in human induced pluripotent stem cells. Nature 471:63–67

    Article  CAS  Google Scholar 

  38. Ji J, Ng SH, Sharma V, Neculai D, Hussein S, Sam M, Trinh Q, Church GM, Mcpherson JD, Nagy A, Batada NN (2012) Elevated coding mutation rate during the reprogramming of human somatic cells into induced pluripotent stem cells. Stem Cells 30:435–440

    Article  CAS  Google Scholar 

  39. Rouhani FJ, Nik-Zainal S, Wuster A, Li Y, Conte N, Koike-Yusa H, Kumasaka N, Vallier L, Yusa K, Bradley A (2016) Mutational history of a human cell lineage from somatic to induced pluripotent stem cells. PLoS Genet 12:e1005932

    Article  Google Scholar 

  40. Young MA, Larson DE, Sun CW, George DR, Ding L, Miller CA, Lin L, Pawlik KM, Chen K, Fan X, Schmidt H, Kalicki-Veizer J, Cook LL, Swift GW, Demeter RT, Wendl MC, Sands MS, Mardis ER, Wilson RK, Townes TM, Ley TJ (2012) Background mutations in parental cells account for most of the genetic heterogeneity of induced pluripotent stem cells. Cell Stem Cell 10:570–582

    Article  CAS  Google Scholar 

  41. Baker D, Hirst AJ, Gokhale PJ, Juarez MA, Williams S, Wheeler M, Bean K, Allison TF, Moore HD, Andrews PW, Barbaric I (2016) Detecting genetic mosaicism in cultures of human pluripotent stem cells. Stem Cell Rep 7:998–1012

    Article  CAS  Google Scholar 

  42. Steinemann D, Göhring G, Schlegelberger B (2013) Genetic instability of modified stem cells - a first step towards malignant transformation? Am J Stem Cells 2:39–51

    CAS  Google Scholar 

  43. Keyvanfar K, Weed J, Swamy P, Kajigaya S, Calado RT, Young NS (2012) Interphase chromosome flow-FISH. Blood 120:e54–e59

    Article  CAS  Google Scholar 

  44. Rassekh SR, Chan S, Harvard C, Dix D, Qiao Y, Rajcan-Separovic E (2008) Screening for submicroscopic chromosomal rearrangements in Wilms tumor using whole-genome microarrays. Cancer Genet Cytogenet 182:84–94

    Article  CAS  Google Scholar 

  45. Pinkel D, Albertson DG (2005) Array comparative genomic hybridization and its applications in cancer. Nat Genet 37(Suppl):S11–S17

    Article  CAS  Google Scholar 

  46. Cross J, Peters G, Wu Z, Brohede J, Hannan GN (2007) Resolution of trisomic mosaicism in prenatal diagnosis: estimated performance of a 50K SNP microarray. Prenat Diagn 27:1197–1204

    Article  Google Scholar 

  47. Valli R, Marletta C, Pressato B, Montalbano G, Lo Curto F, Pasquali F, Maserati E (2011) Comparative genomic hybridization on microarray (a-CGH) in constitutional and acquired mosaicism may detect as low as 8% abnormal cells. Mol Cytogenet 4:13

    Article  Google Scholar 

  48. Tattini L, D’aurizio R, Magi A (2015) Detection of genomic structural variants from next-generation sequencing data. Front Bioeng Biotechnol 3:92

    Article  Google Scholar 

  49. Griffith M, Miller CA, Griffith OL, Krysiak K, Skidmore ZL, Ramu A, Walker JR, Dang HX, Trani L, Larson DE, Demeter RT, Wendl MC, McMichael JF, Austin RE, Magrini V, McGrath SD, Ly A, Kulkarni S, Cordes MG, Fronick CC, Fulton RS, Maher CA, Ding L, Klco JM, Mardis ER, Ley TJ, Wilson RK (2015) Optimizing cancer genome sequencing and analysis. Cell Syst 1:210–223

    Article  CAS  Google Scholar 

  50. Whiting P, Kerby J, Coffey P, Da Cruz L, Mckernan R (2015) Progressing a human embryonic stem-cell-based regenerative medicine therapy towards the clinic. Philos Trans R Soc London Ser B Biol Sci 370:20140375

    Article  Google Scholar 

  51. Olariu V, Harrison NJ, Coca D, Gokhale PJ, Baker D, Billings S, Kadirkamanathan V, Andrews PW (2010) Modeling the evolution of culture-adapted human embryonic stem cells. Stem Cell Res 4:50–56

    Article  Google Scholar 

  52. Watanabe K, Ueno M, Kamiya D, Nishiyama A, Matsumura M, Wataya T, Takahashi JB, Nishikawa S, Muguruma K, Sasai Y (2007) A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat Biotechnol 25:681–686

    Article  CAS  Google Scholar 

  53. Ji J, Sharma V, Qi S, Guarch ME, Zhao P, Luo Z, Fan W, Wang Y, Mbabaali F, Neculai D, Esteban MA, Mcpherson JD, Batada NN (2014) Antioxidant supplementation reduces genomic aberrations in human induced pluripotent stem cells. Stem Cell Rep 2:44–51

    Article  CAS  Google Scholar 

  54. Ben-David U, Arad G, Weissbein U, Mandefro B, Maimon A, Golan-Lev T, Narwani K, Clark AT, Andrews PW, Benvenisty N, Carlos Biancotti J (2014) Aneuploidy induces profound changes in gene expression, proliferation and tumorigenicity of human pluripotent stem cells. Nat Commun 5:4825

    Article  CAS  Google Scholar 

  55. Skotheim RI, Monni O, Mousses S, Fosså SD, Kallioniemi OP, Lothe RA, Kallioniemi A (2002) New insights into testicular germ cell tumorigenesis from gene expression profiling. Cancer Res 62:2359–2364

    CAS  Google Scholar 

  56. Werbowetski-Ogilvie TE, Bossé M, Stewart M, Schnerch A, Ramos-Mejia V, Rouleau A, Wynder T, Smith MJ, Dingwall S, Carter T, Williams C, Harris C, Dolling J, Wynder C, Boreham D, Bhatia M (2009) Characterization of human embryonic stem cells with features of neoplastic progression. Nat Biotechnol 27:91–97

    Article  CAS  Google Scholar 

  57. Werbowetski-Ogilvie TE, Morrison LC, Fiebig-Comyn A, Bhatia M (2012) In vivo generation of neural tumors from neoplastic pluripotent stem cells models early human pediatric brain tumor formation. Stem Cells 30:392–404

    Article  CAS  Google Scholar 

  58. Hwang HS, Kryshtal DO, Feaster TK, Sánchez-Freire V, Zhang J, Kamp TJ, Hong CC, Wu JC, Knollmann BC (2015) Comparable calcium handling of human iPSC-derived cardiomyocytes generated by multiple laboratories. J Mol Cell Cardiol 85:79–88

    Article  CAS  Google Scholar 

  59. Asterias B (2014) Asteria Biotherapeutics, Inc. Announces new results from first-in-man clinical trial of a cell therapy derived from embryonic stem cells [Online]. http://asteriasbiotherapeutics.com/asterias-biotherapeutics-inc-announces-new-results-from-first-in-man-clinical-trial-of-a-cell-therapy-derived-from-embryonic-stem-cells/: Asteria Biotherapeutics. Accessed May 22, 2014 2015

  60. Menasché P, Vanneaux V, Hagège A, Bel A, Cholley B, Cacciapuoti I, Parouchev A, Benhamouda N, Tachdjian G, Tosca L, Trouvin JH, Fabreguettes JR, Bellamy V, Guillemain R, Suberbielle Boissel C, Tartour E, Desnos M, Larghero J (2015) Human embryonic stem cell-derived cardiac progenitors for severe heart failure treatment: first clinical case report. Eur Heart J 36:2011–2017

    Article  Google Scholar 

  61. Pfizer & London, U. C. 2012. https://clinicaltrials.gov/ct2/show/NCT01691261: Clinical Trials. Accessed 22 Sept 2012

  62. Schwartz SD, Regillo CD, Lam BL, Eliott D, Rosenfeld PJ, Gregori NZ, Hubschman JP, Davis JL, Heilwell G, Spirn M, Maguire J, Gay R, Bateman J, Ostrick RM, Morris D, Vincent M, Anglade E, Del Priore LV, Lanza R (2015) Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt's macular dystrophy: follow-up of two open-label phase 1/2 studies. Lancet 385:509–516

    Article  Google Scholar 

  63. Schwartz SD, Hubschman JP, Heilwell G, Franco-Cardenas V, Pan CK, Ostrick RM, Mickunas E, Gay R, Klimanskaya I, Lanza R (2012) Embryonic stem cell trials for macular degeneration: a preliminary report. Lancet 379:713–720

    Article  CAS  Google Scholar 

  64. Li Y, Tsai YT, Hsu CW, Erol D, Yang J, Wu WH, Davis RJ, Egli D, Tsang SH (2012) Long-term safety and efficacy of human-induced pluripotent stem cell (iPS) grafts in a preclinical model of retinitis pigmentosa. Mol Med 18:1312–1319

    CAS  Google Scholar 

  65. David C (2014) Japanese woman is first recipient of next-generation stem cells. Nature News: Nature Publishing Group, London

    Google Scholar 

  66. Andy C (2015) Mutation alert halts stem cell trial to cure blindness. New Scientist: New Scientist

    Google Scholar 

Download references

Acknowledgement

This project received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 668724.

figure a

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. W. Andrews .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kyriakides, O., Halliwell, J.A., Andrews, P.W. (2017). Acquired Genetic and Epigenetic Variation in Human Pluripotent Stem Cells. In: Martin, U., Zweigerdt, R., Gruh, I. (eds) Engineering and Application of Pluripotent Stem Cells. Advances in Biochemical Engineering/Biotechnology, vol 163. Springer, Cham. https://doi.org/10.1007/10_2017_22

Download citation

Publish with us

Policies and ethics