Skip to main content

Ocean Forecast and Analysis Models for Coastal Observatories

  • Chapter
Ocean Weather Forecasting

Abstract

Physical circulation processes in the coastal ocean affect air-sea interaction, sediment transport, the dispersal of nutrients and pollutants from terrestrial sources, and shelf-wide ecosystem dynamics and carbon cycling. A burgeoning network of coastal ocean observatories is expanding our ability to study these processes by simultaneously observing coastal ocean physics, meteorology, geochemistry and ecology at resolutions suited to quantitative interdisciplinary analysis. Complementary developments in ocean modeling have introduced more accurate numerical algorithms, improved parameterizations of unresolved sub-grid-scale mixing and boundary layer processes, and a transition to higher resolution on parallel computing platforms. The formulation and capabilities of modern coastal models are illustrated here with two examples from applications in the Mid-Atlantic Bight region of the northeast U.S. continental shelf. These are the Coupled Boundary Layers and Air-Sea Transfer (CBLAST) program centered on the Martha’s Vineyard Coastal Observatory, and the Lagrangian Transport and Transformation Experiment (LATTE) centered on the Hudson River plume. The studies utilize the Regional Ocean Modeling System (ROMS) as a forecast tool to assist in the deployment of moveable instrumentation, and as a synthesis tool to aid the interpretation of observations. It is shown that regional models have the resolution and accuracy to capture the dominant features of the coastal ocean heat and salinity budget on diurnal to weekly time scales in regions with strong tides, vertical stratification, and highly variable bathymetry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Adams, D.A., J.S. O’Connor, and S.B. Weisberg. 1998, Final Report: Sediment Quality of the NY/NJ Harbor System — An Investigation under the Regional Environmental Monitoring and Assessment Program (REMAP). EPA/902-R-98-001.

    Google Scholar 

  • Anderson, D. M., 1995, Toxic red tides and harmful algal blooms: A practical challenge in coastal oceanography. Reviews in Geophysics, Supplement, 1189–1200.

    Google Scholar 

  • Anderson, R.F., G.T. Rowe, P. Kemp, S. Trumbore, and P.E. Biscaye, 1994, Carbon budget for the mid slope depocenter of the Middle Atlantic Bight, Deep-Sea Res. II, 41, 669–703.

    Article  Google Scholar 

  • Bauer, J.E., E.R.M. Druffel, D.M. Wolgast, and S. Griffin, 2001, Cycling of dissolved and particulate organic radiocarbon in the northwest Atlantic continental margin, Global Biogeochemical Cycles, 15, 615–636.

    Article  Google Scholar 

  • Biscaye, P.E., C.N. Flagg, and P.G. Falkowski, 1994, The Shelf Edge Exchange Processes experiment, SEEP-II: an introduction to hypotheses, results and conclusions, Deep-Sea Res. II, 41, 231–252.

    Article  Google Scholar 

  • Bissett, W.P., K.L. Carder, J.J. Walsh, and D.A. Dieterle, 1999a, Carbon cycling in the upper waters of the Sargasso Sea: II. Numerical simulation of apparent and inherent optical properties. Deep-Sea Research I, 46, 271–317.

    Article  Google Scholar 

  • Bissett, W.P., J.J. Walsh, D.A. Dieterle, and K.L. Carder, 1999b, Carbon cycling in the upper waters of the Sargasso Sea: I. Numerical simulation of differential carbon and nitrogen fluxes. Deep-Sea Research I, 46, 205–269.

    Article  Google Scholar 

  • Boesch, D. F., J. C. Field, and D. Scavia (Eds.), 2000, The potential consequences of climate variability and change on coastal areas and Marine resources sector team, U.S. national assessment of the potential consequences of climate variability and change, U.S. Global Change Research Program. NOAA Coastal Ocean Program Decision Analysis Series No. #21. NOAA Coastal Ocean Program, Silver Spring, MD.

    Google Scholar 

  • Canuto, V.M., A. Howard, Y. Cheng, and M.S. Dubovikov, 2001, Ocean turbulence I: one-point closure model. Momentum and heat vertical diffusivities. J. Phys. Oceanogr. 31, 1413–1426.

    Article  Google Scholar 

  • Chapman, D.C. and R.C. Beardsley, 1989, On the origin of shelf water in the Middle Atlantic Bight. J. Phys. Oceanogr., 19, 384–391.

    Article  Google Scholar 

  • Devol A.H., and J.P. Christensen, 1993, Benthic fluxes and nitrogen cycling in sediments of the eastern North Pacific, J. Mar. Res., 51, 345–372.

    Article  Google Scholar 

  • Dinniman, M.S., J.M. Klinck and W.O. Smith, Jr., 2003, Cross shelf exchange in a model of the Ross Sea circulation and biogeochemistry, Deep Sea Research II, 50, 3103–3120.

    Article  Google Scholar 

  • Durski, S.M., S.M. Glenn, D.B. Haidvogel, 2004, Vertical mixing schemes in the coastal ocean: Comparison of the Level 2.5 Mellor-Yamada scheme with an enhanced version of the K-profile parameterization, Journal of Geophysical Research, 109, C01015, doi:10.1029/2002JC001702.

    Article  Google Scholar 

  • Fairall, C., E. Bradley, D. Rogers, J. Edson, and G. Young, 1996, Bulk parameterization of air-sea fluxes for TOGA COARE, Journal of Geophysical Research, 101, 3747–3764.

    Article  Google Scholar 

  • Flather, R. A., 1976, A tidal model of the northwest European continental shelf. Mem. Soc. Roy. Sci. Liege, Ser. 6, 10, 141–164.

    Google Scholar 

  • Falkowski, P.G., C.N. Flagg, G.T. Rowe, S.L. Smith, T.E. Withledge, and C.D. Wirick, 1988, The fate of a spring phytoplankton bloom: export or oxidation?, Cont. Shelf Res., 8, 457–484

    Article  Google Scholar 

  • Fong, D.A. and W.R. Geyer, 2001, Response of a river plume during an upwelling favorable wind event. J. Geophys. Res., 106, 1067–1084.

    Article  Google Scholar 

  • Galperin, B., L. H. Kantha, S. Hassid, and A. Rosati, 1988, A quasi-equilibrium turbulent energy model for geophysical flows. J. Atmos. Sci. 45: 55–62.

    Article  Google Scholar 

  • Garside, C., T.C. Malone, O.A. Roels and B.A. Sharfstein, 1976, An evaluation of sewage derived nutrients and their influence on the Hudson River estuary and the New York Bight. Estuar. Coastal Mar. Sci. 4, 281–289.

    Article  Google Scholar 

  • Greene, C. H. and others 2003, Trans-Atlantic responses of Calanus finmarchicus populations to basin-scale forcing associated with the North Atlantic Oscillation. Prog. Oceanogr. 58, 301–312.

    Article  Google Scholar 

  • Haidvogel, D.B., A. Shchepetkin, and H. Arango, 2004, The Regional Ocean Modeling System: New Time-stepping Algorithms to Reduce Mode-splitting Error and to Ensure Constancy Preservation.

    Google Scholar 

  • Haidvogel, D.B., H.G. Arango, K. Hedstrom, A. Beckmann, P. Malanotte-Rizzoli, and A.F. Shchepetkin, 2000, Model Evaluation Experiments in the North Atlantic Basin: Simulations in Nonlinear Terrain-Following Coordinates, Dynamics of Atmospheres and Oceans, 32, 239–281.

    Article  Google Scholar 

  • Hallegraeff, G. M. 1993, A review of harmful algal blooms and their apparent global increase. Phycologia 32: 79–99.

    Google Scholar 

  • Hallock, Z. R., and G. O. Marmorino, 2002, Observations of the response of a buoyant estuarine plume to upwelling favorable winds, J. Geophys. Res., 107(C7), 3066, doi:10.1029/2000JC000698.

    Article  Google Scholar 

  • Harris, C.K. and P.L. Wiberg. 2001, A two-dimensional, time-dependent model of suspended sediment transport and bed reworking for continental shelves. Computers and Geosciences, 27: 675–690.

    Article  Google Scholar 

  • Hodur, R. M., J. Pullen, J. Cummings, X. Hong, J.D. Doyle, P. J. Martin, and M.A. Rennick, 2002, The Coupled Ocean/Atmospheric Mesoscale Prediction System (COAMPS), Oceanography, 15, 88–98.

    Google Scholar 

  • Hopkinson, C.S., J.J. Vallino, and A. Nolin, 2002, Decomposition of dissolved organic matter from the continental margin, Deep-Sea Res. II, 49, 4461–4478.

    Article  Google Scholar 

  • Hutto, L., J. Lord, P. Bouchard, R. Weller, and M. Pritchard, 2003, SecNav/CBLAST 2002 field experiment deployment/recovery cruises and data report, F/V Nobska, September 4 and 9, 2002, mooring data June 19–September 9, 2002. Woods Hole Oceanographic Institution Technical Report WHOI-2003-07; UOP Technical Report 2003-03, 114pp.

    Google Scholar 

  • Kantha, L.H., and C.A. Clayson, 1994, An improved mixed layer model for geophysical applications. J. Geophys. Res., 99, 25235–25266.

    Article  Google Scholar 

  • Large, W.G., J.C. McWilliams and S.C. Doney, 1994, Oceanic vertical mixing: A review and a model with a nonlocal k-profile boundary layer parameterization, Reviews of Geophysics, 32, 363–403.

    Article  Google Scholar 

  • Li, Y., and T. J. Smayda. 1998, Temporal variability of chlorophyll in Narragansett Bay, 1973–1990. ICES J. Mar. Sci. 55: 661–667.

    Google Scholar 

  • Li. M. Z. and C. L. Amos, 2001, SEDTRANDS96: the upgraded and better calibrated sediment-transport model for continental shelves. Computers & Geosciences, 27, 619–645.

    Article  Google Scholar 

  • Longhurst, A., S. Sathyendranath, T. Platt, and C. Caverhill, 1995, An estimate of global primary production in the ocean from satellite radiometer data, J. Plank. Res., 17, 1245–1271

    Google Scholar 

  • Luettich, R. A., J.J. Westerink, and N.W. Scheffner, 1992, ADCIRC: An advanced three-dimensional circulation model for shelves, coasts, and estuaries, Tech. Report DRP-92-6, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.

    Google Scholar 

  • Lutjeharms, J.R.E., P. Penven and C. Roy, 2003, Modelling the shear edge eddies of the southern Agulhas Current, Continental Shelf Research, 23, 1099–1115.

    Article  Google Scholar 

  • MacCready, P. and W.R. Geyer, 2001, Estuarine salt flux through an isohaline surface, Journal of Geophysical Research, 106, 11629–11637.

    Article  Google Scholar 

  • Malone, T., D.J. Conley, T.R. Fisher, P.M. Glibert, L.W. Harding, and K. Sellner. 1996, Scales of nutrient limited phytoplankton productivity in Chesapeake Bay. Estuaries, 19(2B): 371–385.

    Article  Google Scholar 

  • Marchesiello, P., J.C. McWilliams, and A. Shchepetkin, 2001, Open boundary conditions for long-term integration of regional ocean models, Ocean Modelling, 3, 1–20.

    Article  Google Scholar 

  • Marchesiello, P., J. C. McWilliams, and A. Shchepetkin, 2003, Equilibrium Structure and Dynamics of the California Current System, Journal of Physical Oceanography, 33, 753–783.

    Article  Google Scholar 

  • Mellor, G.L. and T. Yamada, 1982, Development of a Turbulence Closure Model for Geophysical Fluid Problems, Reviews of Geophysics and Space Physics, 20, 851–875.

    Google Scholar 

  • Moore, A.M., H.G. Arango, A.J. Miller, B.D. Cornuelle, E. Di Lorenzo and D.J. Neilson, 2004, A Comprehensive Ocean Prediction and Analysis System Based on the Tangent Linear and Adjoint Components of a Regional Ocean Model, Ocean Modelling, 7, 227–258.

    Article  Google Scholar 

  • Mountain, D. G., 2003, Variability in the properties of Shelf Water in the Middle Atlantic Bight, 1977–1999, J. Geophys. Res., 108(C1), 3014, doi:10.1029/2001JC001044.

    Article  Google Scholar 

  • Munchow, A and R. Garvine, 1993, Buoyancy and wind forcing of a coastal current current. J. Mar. Res., 51 293–322.

    Article  Google Scholar 

  • NGDC (National Geophysical Data Center), 2004, Coastal Relief Model, Data Announcement 04-MGG-01, http://www.ngdc.noaa.gov/mgg/coastal/coastal.html.

    Google Scholar 

  • Olson, R. J., A. A. Shalapyonok, and H. M. Sosik. 2003, An automated submersible flow cytometer for pico-and nanophytoplankton: FlowCytobot. Deep-Sea Research I, 50: 301–315.

    Article  Google Scholar 

  • O’Reilly, J. E., C. Evans-Zetlin, and D. A. Busch. 1987, Primary production, p. 220–233. In D. W. Bourne [ed.], Georges Bank. The MIT Press.

    Google Scholar 

  • Ottersen, G., B. Planque, A. Belgrano, E. Post, P. C. Reid, and N. C. Stenseth. 2001, Ecological effects of the North Atlantic Oscillation. Oceanologia 128: 1–14.

    Article  Google Scholar 

  • Peliz, A., J. Dubert, D. B. Haidvogel, and B. Le Cann, 2003, Generation and unstable evolution of a density-driven eastern poleward current: The Iberian Poleward Current, Journal of Geophysical Research, 108, 3268, doi:10.1029/2002JC001443.

    Article  Google Scholar 

  • Shchepetkin, A.F. and J.C. McWilliams, 1998, Quasi-monotone advection schemes based on explicit locally adaptive dissipation, Monthly Weather Review, 126, 1541–1580.

    Article  Google Scholar 

  • Shchepetkin, A.F. and J.C. McWilliams, 2003, A Method for Computing Horizontal Pressure-Gradient Force in an Oceanic Model with a Non-Aligned Vertical Coordinate, Journal of Geophysical Research, 108, 3090, doi:10.1029/2001JC001047.

    Article  Google Scholar 

  • Shchepetkin, A.F. and J.C. McWilliams, 2005, The Regional Ocean Modeling System: A split-explicit, free-surface, topography following coordinates ocean model, Ocean Modelling, submitted.

    Google Scholar 

  • Smayda, T. J. 1990, Novel and nuisance phytoplankton blooms in the sea: Evidence for a global epidemic. In E. Graneli, B. Sundstrom, L. Edler and D. M. Anderson (eds.), Toxic marine phytoplankton. Elsevier.

    Google Scholar 

  • Smayda, T. J., 1998, Patterns of variability characterizing marine phytoplankton, with examples from Narragansett Bay. ICES J. Mar. Sci,. 55.

    Google Scholar 

  • Seitzinger S.P., and Giblin A.E., 1996, Estimating denitrification in North Atlantic continental shelf sediments, Biogeochemistry, 35, 235–260.

    Article  Google Scholar 

  • Sosik, H. M., R. J. Olson, M. G. Neubert, A. Shalapyonok and A. Solow, 2003. Growth rates of coastal phytoplankton from time-series measurements with a submersible flow cytometer. Limnology and Oceanography, 48, 1756–1765.

    Article  Google Scholar 

  • Soulsby, R. L., 1995, Bed shear-stresses due to combined waves and currents, In: M. J. F. Stive et al., Advances in Coastal Morphodynamics, 4-20–4-23.

    Google Scholar 

  • Umlauf, L. and H. Burchard, 2003, A generic length-scale equation for geophysical turbulence models, Journal of Marine Research, 61, 235–265.

    Article  Google Scholar 

  • Verity, P.G., J.E. Bauer, C.N. Flagg, D.J. DeMaster, and D.J. Repeta, 2002, The Ocean Margins Program: an interdisciplinary study of carbon sources, transformations, and sinks in a temperate continental margin system, Deep-Sea Res. II, 49, 4273–4295.

    Article  Google Scholar 

  • Walsh, J.J., 1994, Particle export at Cape Hatteras, Deep-Sea Res. II, 41, 603–628.

    Article  Google Scholar 

  • Walsh, J.J., D. A. Dieterle, and M.B. Meyers, 1988, A simulation analysis of the fate of phytoplankton within the Mid-Atlantic Bight, Cont. Shelf Res., 8, 757–787.

    Article  Google Scholar 

  • Walsh, J. J., T. E. Whitledge, J. E. O’Reilly, W. C. Phoel, and A. F. Draxler. 1987, Nitrogen cycling on Georges Bank and the New York Shelf: A comparison between well-mixed and seasonally stratified waters, p. 234–246. In R. H. Backus and D. W. Bourne [eds.], Georges Bank. The MIT Press.

    Google Scholar 

  • Wang, S., Q. Wang, Z. Gao, J. Edson, R. Weller and C. Helmis, 2004, Evaluation of COAMPS Real Time Forecast for CBLAST-Low Summer Experiments 2002/2003, Eos Trans. AGU Suppl.

    Google Scholar 

  • Warner, J.C., C.R. Sherwood, H.G. Arango and R. P. Signell, 2005, Performance of four turbulence closure methods implemented with a generic length scale method, Ocean Modelling, 8(1–2), 81–113, doi:10.1016/j.ocemod.2003.12.003

    Article  Google Scholar 

  • Weaver, A. T., J. Vialard, and D. L. T. Anderson, 2003, Three-and four-dimensional variational assimilation with an ocean general circulation model of the tropical Pacific Ocean. Part 1: Formulation, internal diagnostics and consistency checks. Mon. Wea. Rev., 131, 1360–1378.

    Article  Google Scholar 

  • Wijesekera, H.W., J.S. Allen, and P.A. Newberger, 2003, Modeling study of turbulent mixing over the continental shelf: Comparison of turbulent closure schemes. J. Geophys. Res. 108(C3), 3103, doi:10.1029/2001JC001234.

    Article  Google Scholar 

  • Wilkin, J.L., H. G. Arango, D. B. Haidvogel, C. S. Lichtenwalner, S. M. Glenn, and K. S. Hedström, 2004, A Regional Ocean Modeling System for the Long-term Ecosystem Observatory, Journal of Geophysical Research, in press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Wilkin, J.L., Lanerolle, L. (2006). Ocean Forecast and Analysis Models for Coastal Observatories. In: Chassignet, E.P., Verron, J. (eds) Ocean Weather Forecasting. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4028-8_25

Download citation

Publish with us

Policies and ethics