Skip to main content

Improvements in the Peptide Mass Fingerprint Protein Identification

Hydrogen/Deuterium Exchange for Higher Specificity of Protein Identification by Peptide Mass Fingerprinting. (Bienvenut, Hoogland et al., 2002)

  • Chapter
Acceleration and Improvement of Protein Identification by Mass Spectrometry

Abstract

Genome sequencing projects produce large amounts of information that could be translated into potential protein sequences. Such amounts of material continuously increase protein database sizes. At present, 15 times more protein sequences are available in the SWISS-PROT and TrEMBL databases than 8 years ago in SWISS-PROT. One of the methods of choice for protein identification makes use of specific endoproteolytic cleavage followed by the MALDI-MS analysis of the digested product. Since 1993, when this technique was first demonstrated, the conditions required for a correct identification have changed dramatically. Whilst 4–5 peptides with an accuracy of 2–3 Da were sufficient for a correct identification in 1993, 10–13 peptides with less than 60 ppm mass error are now required for Human and E. coli proteins. This evolution is directly related to the continuous increase of protein database sizes, which causes an increase of the number of false positive matches in identification results. Utilisation of an information complement deduced from the primary protein sequence in the process of identification by peptide mass fingerprints can help to increase confidence in the identification results. In this article, we propose the exchange of labile hydrogen atoms with deuterium atoms. The exchange reaction with optimised techniques has shown an average 95% of hydrogen/deuterium exchange on tryptic peptides. This level of exchange was sufficient to single out one or more peptides from a list of potential candidate proteins due to the dependence of hydrogen/deuterium exchange on the peptide primary structure. This technique also has clear advantages in the identification of small proteins where direct protein identification is impaired by the limited number of endoproteolytic peptides. Then, primary sequence information obtained with this technique could help to identify proteins with high confidence without any expensive tandem mass spectrometer instruments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7. References

  • Acharya, A., Maanjula, B., Murthy, G., & Vithayathil, P. (1977). Int JPeptide Protein Res, 9, 213–219.

    Google Scholar 

  • Adams, M., Celniker, S., Holt, R., Venter, J., & al., e. (2000). Science, 287, 2185–2191.

    Article  PubMed  Google Scholar 

  • Axelsson, J., Naven, T., & Fenyo, D. (2001, 4–6th of April). Paper presented at the From biology to pathology: the proteomics perspective, York, UK.

    Google Scholar 

  • Bairoch, A., & Apweiler, R. (2000). The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000. Nucleic acids research, 28, 45–48.

    Article  PubMed  Google Scholar 

  • Bartlet-Jones, M., Jeffrey, W., Hansen, H., & Pappin, D. (1994). Peptide ladder sequencing by MS using a novel volatile degradation reagent. Rapid Commun. Mass Spectrom., 8, 737–742.

    Article  PubMed  Google Scholar 

  • Bienvenut, W., Hoogland, C., Greco, A., Heller, M., Gasteiger, E., Appel, R., et al. (2002). Hydrogen/deuterium exchange for higher specificity of protein identification by peptide mass fingerprinting. Rapid Commun. Mass Spectrom., 16(6), 616–626.

    Article  PubMed  Google Scholar 

  • Bienvenut, W., Sanchez, J., Karmime, A., Rouge, V., Rose, K., Binz, P., et al. (1999). Toward a clinical molecular scanner for proteome research: parallel protein chemical processing before and during western blot. Anal Chem, 71(21), 4800–4807.

    Article  PubMed  Google Scholar 

  • Blattner, F., Plunkett, G. r., Bloch, C., Perna, N., Burland, V., Riley, M., et al. (1997). Science, 277, 1453–1474.

    Article  PubMed  Google Scholar 

  • Brown, R., & Lennon, J. (1995). Mass resolution improvement by incorporation of pulsed ion extraction in a matrix-assisted laser desorption/ionisation linear time-of-flight mass spectrometer. Anal. Chem, 67, 1988–2003.

    Google Scholar 

  • Chaurand, P., Luetzenkirchen, F., & Spengler, B. (1999). Peptide and protein identification by MALDI-PSD TOF-MS. J. Am. Soc. Mass Spectrom., 10, 91–103.

    Article  PubMed  Google Scholar 

  • Clauser, K., Baker, P., & Burlingame, A. (1999). Anal. Chem., 71, 2076–2084.

    Article  PubMed  Google Scholar 

  • Consortium, I. H. G. S. (2001). Initial sequencing and analysis of the human genome. Nature, 409(6822), 860–921.

    Article  PubMed  Google Scholar 

  • Engen, J., & Smith, D. (2001). Investigating protein structure and dynamics by hydrogen exchange MS. Anal. Chem., 73, J. Chromatogr. A 256–A265.

    Google Scholar 

  • Englander, J., Rogero, J., & Englander, S. (1985). Anal. Biochem., 147, 234–.

    PubMed  Google Scholar 

  • Englander, S., & Kallenbach, N. (1984). Q. Rev. Biophys., 16, 521.

    Google Scholar 

  • Falick, A., & Maltby, D. (1989). Anal. Biochem., 182, 165–169.

    Article  PubMed  Google Scholar 

  • Figueroa, I., Torres, O., & Russell, D. (1998). Effects of the water content in the sample preparation for MALDI on the mass spectra. Anal. Chem., 70, 4527–4533.

    Article  PubMed  Google Scholar 

  • Fleischmann, R., Adams, M., White, O., Clayton, R., Kirkness, E., Kerlavage, A., et al. (1995). Science, 269, 496–512.

    PubMed  Google Scholar 

  • Fraenkel-Conrat, H., & Olcott, H. (1945). J. Biol. Chem., 161, 259–268.

    Google Scholar 

  • Greco, A., Bienvenut, W., Sanchez, J., Kindbeiter, K., Hochstrasser, D., Madjar, J., et al. (2001). Identification of ribosome-associated viral and cellular basic proteins during the course of infection with herpes simplex virus type 1. Proteomics, 1(4), 545–549.

    Article  PubMed  Google Scholar 

  • Gygi, S., Rist, B., Gerber, S., Turecek, F., Gelb, M., & Aebersold, R. (1999). quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nature Biotechnol., 17, 994–999.

    Article  Google Scholar 

  • Henzel, W. J., Billeci, T. M., Stults, J. T., Wong, S. C., Grimley, C., & Watanabe, C. (1993). Identifying proteins from two-dimensional gels by molecular mass searching of peptide fragments in protein sequence databases. Proceedings of the National Academy of Sciences of the United States of America, 90(11), 5011–5015.

    PubMed  Google Scholar 

  • Hunt, D., Yates, J., Shabanowitz, J., Winston, S., & Hauer, C. (1986). Proc. Natl. Sci. USA, 83, 6233–6237.

    Google Scholar 

  • James, P., Quadroni, M., Carafoli, E., & Gonnet, G. (1993). Protein identification by mass profile fingerprinting. Biochem Biophys Res Commun, 195(1), 58–64.

    Article  PubMed  Google Scholar 

  • James, P., Quadroni, M., Carafoli, E., & Gonnet, G. (1994). Protein identification in DNA databases by peptide mass fingerprinting. Protein Sci., 3(8), 1347–1350.

    PubMed  Google Scholar 

  • Jensen, O. N., Vorm, O., & Mann, M. (1996). Sequence patterns produced by incomplete enzymatic digestion or one-step Edman degradation of peptide mixtures as probes for protein database searches. Electrophoresis, 17(5), 938–944.

    Article  PubMed  Google Scholar 

  • Katta, V., & Chait, B. (1993). J. Am. Chem. Soc., 115, 6317–6321.

    Article  Google Scholar 

  • Kaufmann, R., Spengler, B., & Lutzenkirchen, F. (1993). Mass spectrometric sequencing of linear peptides by product-ion anaylsis in a reflectron time-of-flight mass spectrometer using matric-assisted laser desorption/ionisation. Rapid Commun. Mass Spectrom., 7, 902–910.

    Article  PubMed  Google Scholar 

  • Kraus, M., Janck, K., Bienert, M., & Krause, E. (2000). Characterisation of intermolecular ?-sheet peptides by mass spectrometry and hydrogen isotope exchange. Rapid Commun. Mass Spectrom., 14, 1094–1104.

    Article  PubMed  Google Scholar 

  • Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227(259), 680–685.

    PubMed  Google Scholar 

  • Lahn, H. W., & Langen, H. (2000). Mass spectrometry: a tool for the identifiaction of proteins separated by gels. Electrophoresis, 21, 2105–2114.

    Article  PubMed  Google Scholar 

  • Mann, M., Höjrup, P., & Roepstorff, P. (1993). Biol. Mass Spectrum, 22, 338.

    Article  Google Scholar 

  • McMurry, J. (1988). Organic chemistry (2nd ed.). Belmont, CA,: Brooks/Cole Publishing Company.

    Google Scholar 

  • Ng, W., Kennedy, S., Mahairas, G., Berquist, B., Pan, M., Shukla, H., et al. (2000). Proc. Natl. Acad. Sci. USA, 97, 12176–12181.

    Article  PubMed  Google Scholar 

  • Nutkins, J., & Williams, D. (1989). Eur. J. Biochem.

    Google Scholar 

  • Ohguro, H., Palczewski, K., Walsh, K., & Johnson, R. (1994). Prot Scien, 3, 2428–2434.

    Google Scholar 

  • Pappin, D., Hojrup, P., & Bleasby, A. (1993). Rapid identification of proteins by petide mass fingerprint. Curr. Biol., 3(6), 327–332.

    Article  PubMed  Google Scholar 

  • Patterson, S., Thomas, D., & Bradshaw, R. (1996). Application of combined mass spectrometry and partial amino acid sequence to the identification of gel separated proteins. Electrophoresis, 17, 877–891.

    Article  PubMed  Google Scholar 

  • Rosa, J., & Richards, J. (1979). J. Mol. Biol., 133, 399–.

    Article  PubMed  Google Scholar 

  • Sepetov, N. F., Issakova, O. L., Lebl, M., Swiderek, K., Stahl, D. C., & Lee, T. D. (1993). The use of hydrogen-deuterium exchange to facilitate peptide sequencing by electrospry tandem mass spectrometry. Rapid Commun. Mass Spectrom., 7, 58–62.

    Article  PubMed  Google Scholar 

  • Shevchenko, A., Jensen, O. N., Podtelejnikov, A. V., Sagliocco, F., Wilm, M., Vorm, O., et al. (1996). Linking genome and proteome by mass spectrometry: large-scale identification of yeast proteins from two dimensional gels. Proc. Natl. Acad. Sci U.S.A., 93(25), 14440–14445.

    Article  PubMed  Google Scholar 

  • Spengler, B., Lutzenkirchen, F., & Kaufmann, R. (1993). On-target deuteration for peptide sequencing by laser mass spectrometry. Org. Mass Spectrom., 28, 1482–1490.

    Article  Google Scholar 

  • The Arabidopsis Initiative. (2000). Nature, 408, 796–815.

    Google Scholar 

  • The C elegans Sequencing Consortium. (1998). Science, 282, 2012–2018.

    Google Scholar 

  • Vestal, M. L., Juhasz, P., & Martin, S. A. (1995). Delayed extraction matrix-assisted laser desorption time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom., 9, 1044–1050.

    Article  Google Scholar 

  • Wang, F., & Tang, X. (1996). Biochemistry, 35, 4069–4078.

    Article  PubMed  Google Scholar 

  • Wheeler, D., Church, D., Lash, A., Leipe, D., Madden, T., Pontius, J., et al. (2001). Database resources of the national center for biotechnology information. Nucleic acids research, 29, 11.juin.

    Google Scholar 

  • Whittal, R., & Li, L. (1995). Anal. Chem., 67, 1950–1954.

    Article  PubMed  Google Scholar 

  • Wilcox, P. (1967). Esterification. Meth. Enzym., 11, 605–616.

    Google Scholar 

  • Yates, J. R., III, Speicher, S., Griffin, P. R., & Hunkapiller, T. (1993). Peptide mass maps: A highly informative approach to protein identification. Anal Biochem, 214, 397–408.

    Article  PubMed  Google Scholar 

  • Zhang, W., & Chait, B. (2000). Anal. Chem., 72, 2482–2489.

    Article  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Bienvenut, W. et al. (2005). Improvements in the Peptide Mass Fingerprint Protein Identification. In: Bienvenut, W.V. (eds) Acceleration and Improvement of Protein Identification by Mass Spectrometry. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3319-2_6

Download citation

Publish with us

Policies and ethics