Skip to main content
Log in

Discrete-time renewal input state dependent queue with working vacations and change over time

  • Application Article
  • Published:
OPSEARCH Aims and scope Submit manuscript

Abstract

This paper considers a discrete-time renewal input state dependent queue with multiple working vacations and change over time. Using the supplementary variable and recursive techniques, the steady state system length distributions at different time epochs have been derived. Based on the system length distributions, some performance measures of the model have been discussed. The optimum values of service rates have been found through quadratic fit search method under a given cost structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Alfa, A.S.: Vacation models in discrete time. Queueing Syst. 55, 5–30 (2003)

    Google Scholar 

  2. Chao, X., Rahman, A.: Analysis and computational algorithm for queues with state dependent vacations I: G/M(n)/1/K. J. Syst. Sci. Syst. Complx 19, 36–53 (2006)

    Article  Google Scholar 

  3. Chaudhry, M.L.: Simple transient solution of discrete-time Markovian queues: G e o m(n)/G e o m(n)/1/N, Report of the Department of Mathematics and Computer Science, Royal Military College of Canada (1994)

  4. Chaudhry, M.L., Gupta, U.C.: Performance analysis of the discrete-time G I/G e o m/1/N queue. J. Appl. Prob. 33, 239–255 (1996)

    Article  Google Scholar 

  5. Chaudhry, M.L., Templeton, J.G.C., Gupta, U.C.: Analysis of the discrete-time G I/G e o m(n)/1/N queue. Compt. Math. Appl. 31, 59–68 (1996)

    Article  Google Scholar 

  6. Chaudhry, M.L., Templeton, J.G.C., Gupta, U.C.: On the relations among the distributions at different epochs for the discrete time G I/G e o m/1 queue. Oper. Res. Lett. 18, 247–255 (1996)

    Article  Google Scholar 

  7. Goswami, V., Mund, G.B.: Analysis of a discrete-time G I/G e o/1/N queue with multiple working vacations. J. Syst. Sci. Eng. 19(3), 367–384 (2010)

    Article  Google Scholar 

  8. Goswami, V., Vijaya Laxmi, P., Jyothsna, K.: Analysis of G I/M(n)/1/N queue with state-dependent multiple working vacations. Opsearch 50(1), 106–124 (2013)

    Article  Google Scholar 

  9. Li, J., Tian, N., Liu, W.: Discrete-time G I/G e o/1 queue with multiple working vacations. Queueing Syst. 56, 53–63 (2007)

    Article  Google Scholar 

  10. Rardin, R.L.: Optimization in Operations Research. Prentice Hall, New Jersey (1997)

    Google Scholar 

  11. Samanta, S.K., Gupta, U.C., Sharma, R.K.: Analysis of finite capacity discrete-time G I/G e o/1 queueing system with multiple vacations. J. Oper. Res. Soc. 58, 368–377 (2007)

    Article  Google Scholar 

  12. Takagi, H.: Queueing Analysis - Discrete time Systems, vol. 3. Elsevier, North Holland (1993)

    Google Scholar 

  13. Tian, N., Li, J., Zhang, Z.G.: Matrix analytic method and working vacation queues - A Survey. Int. J. Info. Mang. Sci. 20, 603–633 (2009)

    Google Scholar 

  14. Vijaya Laxmi, P., Seleshi, D., Goswami, V.: Finite buffer servers vacation queue with change over times. Int. J. Appl. Math. Comp. 4(4), 341–351 (2012)

    Google Scholar 

  15. Yu, M., Tanga, Y., Fu, Y., Pan, L.: G I/G e o m/1/N/M W V queue with changeover time and searching for the optimum service rate in working vacation period. J. Compt. Appl. Math. 235, 2170–2184 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the referees for their valuable comments and suggestions which have helped in improving the quality of the presentation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Vijaya Laxmi.

Appendix :

Appendix :

Some part of the computational algorithm is presented below. Appendix A1 presents the derivation of ζ n,z and \(\zeta _{n,z}^{(l)}\). The computation of e n,z , f n,z and \(e_{n,z}^{(l)},~f_{n,z}^{(l)}\) is presented in A2.

1.1 A1 Calculation of ζ n,z and \(\zeta _{n,z}^{(l)}\)

For n=N,

$$\begin{array}{@{}rcl@{}} \zeta_{N,z}& =& \left\{ \begin{array}{l} \bar\phi A^{*(1)}(z)\left(\bar\gamma_{N-1}\psi_{N-1}+\bar\gamma_{N}\psi_{N}\right), ~z=\delta_{N},\\ \frac{\bar\phi A^{*}(z)(\bar\gamma_{N-1}\psi_{N-1}+\bar\gamma_{N}\psi_{N})-\bar\phi\bar\gamma_{N}\psi_{N}}{z-\delta_{N}}, ~z\neq\delta_{N}, \end{array} \right. \\\\ \zeta_{N,z}^{(l)}&= &\left\{ \begin{array}{l} \frac{\bar\phi A^{*(l+1)}(z)\left(\bar\gamma_{N-1}\psi_{N-1}+\bar\gamma_{N}\psi_{N}\right)}{l+1}, ~z=\delta_{N},\\ \frac{\bar\phi A^{*(l)}(z)(\bar\gamma_{N-1}\psi_{N-1}+\bar\gamma_{N}\psi_{N})-l\zeta_{N,z}^{(l-1)}}{z-\delta_{N}}, ~z\neq\delta_{N}. \end{array} \right. \end{array} $$

For n=N−1,

$$\begin{array}{@{}rcl@{}} \zeta_{N-1,z}& =& \left\{ \begin{array}{l} \bar\phi A^{*(1)}(z)\left(\gamma_{N-1}\psi_{N-1}+\bar\gamma_{N-2}\psi_{N-2}+\gamma_{N}\psi_{N}\right) \\+\bar\phi\gamma_{N}\zeta_{N,z}^{(1)} ,~z=\delta_{N-1},\\ \frac{\bar\phi\psi_{N-1} \left(\gamma_{N-1}A^{*}(z)-\bar\gamma_{N-1}\right)+\bar\phi\gamma_{N}\zeta_{N,z} }{z-\delta_{N-1}}\\ +\frac{\bar\phi A^{*}(z)\bar\gamma_{N-2}\psi_{N-2}+\gamma_{N}\bar\phi\psi_{N}\left( A^{*}(z)-1\right)}{z-\delta_{N-1}}, z\neq\delta_{N-1}, \end{array} \right. \\\\ \zeta_{N-1,z}^{(l)}& =& \left\{ \begin{array}{l} \bar\phi A^{*(l+1)}(z)\left(\gamma_{N-1}\psi_{N-1}+\bar\gamma_{N-2}\psi_{N-2}+\gamma_{N}\psi_{N}\right) \\+\bar\phi\gamma_{N}\zeta_{N,z}^{(l+1)} , ~z=\delta_{N-1},\\ \frac{\bar\phi A^{*(l)}(z) \left(\bar\gamma_{N-2}\psi_{N-2}+\gamma_{N-1}\psi_{N-1}+\gamma_{N}\psi_{N}\right)}{z-\delta_{N-1}}\\ +\frac{\bar\phi\gamma_{N}\zeta_{N,z}^{(l)}-l\zeta_{N-1,z}^{(l-1)}}{z-\delta_{N-1}}, ~~z\neq\delta_{N-1}. \end{array} \right. \end{array} $$

For 1≤nN−2,

$$\begin{array}{@{}rcl@{}} \zeta_{n,z}& =& \left\{ \begin{array}{l} \bar\phi A^{*(1)}(z)\left(\gamma_{n}\psi_{n}+\bar\gamma_{n-1}\psi_{n-1}\right)+\bar\phi\gamma_{n+1}\zeta_{n+1,z}^{(1)} , ~z=\delta_{n},\\ \frac{\bar\phi\psi_{n}\left(\gamma_{n}A^{*}(z)-\bar\gamma_{n}\right) +\bar\phi\gamma_{n+1}\left(\zeta_{n+1,z}-\psi_{n+1}\right)}{z-\delta_{n}} \\+\frac{\bar\phi A^{*}(z)\bar\gamma_{n-1}\psi_{n-1}}{z-\delta_{n}}, ,~z\neq\delta_{n}, \end{array} \right. \\\\ \zeta_{n,z}^{(l)}& =& \left\{ \begin{array}{l} \frac{\bar\phi A^{*(l+1)}(z)\left(\gamma_{n}\psi_{n}+\bar\gamma_{n-1}\psi_{n-1}\right)+\bar\phi\gamma_{n+1}\zeta_{n+1,z}^{(l+1)}}{l+1} , ~z=\delta_{n},\\ \frac{\bar\phi A^{*(l)}(z)\left(\gamma_{n}\psi_{n}+\bar\gamma_{n-1}\psi_{n-1}\right) +\bar\phi\gamma_{n+1}\zeta_{n+1,z}^{(l)}-l\zeta_{n,z}^{(l-1)}}{z-\delta_{n}} , z\neq\delta_{n}, \end{array} \right. \end{array} $$

1.2 A2 Calculation of e n,z ,f n,z and \(e_{n,z}^{(l)}, f_{n,z}^{(l)}\)

For n=N,

$$\begin{array}{@{}rcl@{}} e_{N,z}& =& \left\{ \begin{array}{l} \phi A^{*(1)}(z)(\bar\gamma_{N-1}\psi_{N-1} +\bar\gamma_{N}\psi_{N}) +\phi\bar\gamma_{N}\zeta_{N,z}^{(1)}\\ +A^{*(1)}(z)\bar\mu_{N-1}t_{N-1}, ~z=\bar\mu_{N},\\ \frac{\phi A^{*}(z)(\bar\gamma_{N-1}\psi_{N-1} +\bar\gamma_{N}\psi_{N}) +\phi\bar\gamma_{N}\zeta_{N,z}+A^{*}(z)\bar\mu_{N-1}t_{N-1}}{z-\bar \mu_{N}}\\ -\frac{\phi\bar\gamma_{N}\psi_{N}}{z-\bar\mu_{N}} ,~z\neq\bar\mu_{N}, \end{array} \right. \\\\\\f_{N,z}& =& \left\{ \begin{array}{l} A^{*(1)}(z)(\bar\mu_{N-1}d_{N-1}+\bar\mu_{N}d_{N}), ~z=\bar\mu_{N},\\ \frac{A^{*}(z)(\bar\mu_{N-1}d_{N-1}+\bar\mu_{N}d_{N})-\bar\mu_{N}d_{N}}{z-\bar \mu_{N}} ,~z\neq\bar\mu_{N}, \end{array} \right. \\\\\\e_{N,z}^{(l)}& =& \left\{ \begin{array}{l} \frac{\phi A^{*(l+1)}(z)(\bar\gamma_{N-1}\psi_{N-1} +\bar\gamma_{N}\psi_{N}) +\phi\bar\gamma_{N}\zeta_{N,z}^{(l+1)}}{(l+1)}\\+\frac{A^{*(l+1)}(z)\bar\mu_{N-1}t_{N-1}}{(l+1)}, ~z=\bar\mu_{N},\\ \frac{\phi A^{*(l)}(z)(\bar\gamma_{N-1}\psi_{N-1} +\bar\gamma_{N}\psi_{N}) +A^{*(l)}(z)\bar\mu_{N-1}t_{N-1}}{z-\bar \mu_{N}}\\ +\frac{\phi\bar\gamma_{N}\zeta_{N,z}^{(l)}-l e_{N,z}^{(l-1)}}{z-\bar\mu_{N}} ,~z\neq\bar\mu_{N}, \end{array} \right. \\\\\\f_{N,z}^{(l)}& =& \left\{ \begin{array}{l} \frac{A^{*(l+1)}(z)(\bar\mu_{N-1}d_{N-1}+\bar\mu_{N}d_{N})}{(l+1)}, ~z=\bar\mu_{N},\\ \frac{A^{*(l)}(z)(\bar\mu_{N-1}d_{N-1}+\bar\mu_{N}d_{N})-lf_{N,z}^{(l-1)}}{z-\bar \mu_{N}} ,~z\neq\bar\mu_{N}. \end{array} \right. \end{array} $$

For n=N−1,

$$\begin{array}{@{}rcl@{}} e_{N-1,z}& =& \left\{ \begin{array}{l} \phi A^{*(1)}(z)(\bar\gamma_{N-2}\psi_{N-2}+\gamma_{N-1}\psi_{N-1} +\gamma_{N}\psi_{N}) +\phi\bar\gamma_{N-1}\zeta_{N-1,z}^{(1)} \\+\phi\gamma_{N}\zeta_{N,z}^{(1)}+\mu_{N}e_{N,z}^{(1)} +A^{*(1)}(z)(\bar\mu_{N-2}t_{N-2}+\mu_{N-1}t_{N-1}),\!z=\bar\mu_{N-1},\\ \frac{\phi A^{*}(z)(\bar\gamma_{N-2}\psi_{N-2}+\gamma_{N-1}\psi_{N-1} +\gamma_{N}\psi_{N})+\phi\bar\gamma_{N-1}\zeta_{N-1,z}}{z-\bar \mu_{N}}\\ -\frac{\phi(\bar\gamma_{N-1}\psi_{N-1} +\gamma_{N}\psi_{N})+A^{*}(z)(\bar\mu_{N-2}t_{N-2}+\mu_{N-1}t_{N-1} )}{z-\bar \mu_{N-1}} \\+\frac{\phi\gamma_{N}\zeta_{N,z}+\mu_{N}e_{N,z}-\bar\mu_{N-1}t_{N-1}}{z-\bar \mu_{N-1}} ,~z\neq\bar\mu_{N-1}, \end{array} \right. \\\\\\f_{N-1,z}& =& \left\{ \begin{array}{l} \mu_{N}f_{N,z}^{(1)}+A^{*(1)}(z)\left(\bar\mu_{N-2}d_{N-2} +\mu_{N-1}d_{N-1}+\mu_{N}d_{N}\right), ~z=\bar\mu_{N-1},\\ \frac{\mu_{N}f_{N,z}+A^{*}(z)\left(\bar\mu_{N-2}d_{N-2} +\mu_{N-1}d_{N-1}+\mu_{N}d_{N}\right)}{~z-\bar\mu_{N-1}}\\ -\frac{\mu_{N}d_{N}-\bar \mu_{N-1}d_{N-1}}{~z-\bar\mu_{N-1}} ,~z\neq\bar\mu_{N-1}, \end{array} \right. \end{array} $$
$$\begin{array}{@{}rcl@{}} e_{N-1,z}^{(l)}& =& \left\{ \begin{array}{l} \frac{\phi A^{*(l+1)}(z)(\bar\gamma_{N-2}\psi_{N-2}+\gamma_{N-1}\psi_{N-1} +\gamma_{N}\psi_{N}) }{l+1}\\+\frac{\mu_{N}e_{N,z}^{(l+1)}+A^{*(l+1)}(z)(\bar\mu_{N-2}t_{N-2}+\mu_{N-1}t_{N-1})}{l+1} \\+\frac{\phi(\bar\gamma_{N-1}\zeta_{N-1,z}^{(l+1)}+\gamma_{N}\zeta_{N,z}^{(l+1)})}{(l+1)}, ~z=\bar\mu_{N-1},\\ \frac{\phi A^{*(l)}(z)(\bar\gamma_{N-2}\psi_{N-2}+\gamma_{N-1}\psi_{N-1} +\gamma_{N}\psi_{N}) +\mu_{N}e_{N,z}^{(l)}}{z-\bar \mu_{N-1}}\\ +\frac{\phi(\bar\gamma_{N-1}\zeta_{N-1,z}^{(l)}+\gamma_{N}\zeta_{N,z}^{(l)})+A^{*(l)}(z)(\bar\mu_{N-2}t_{N-2}+\mu_{N-1}t_{N-1})}{z-\bar \mu_{N-1}}\\ -\frac{le_{N-1,z}^{(l-1)}}{z-\bar \mu_{N-1}} ,~z\neq\bar\mu_{N-1}, \end{array} \right. \\\\f_{N-1,z}^{(l)}& =& \left\{ \begin{array}{l} \frac{A^{*(l+1)}(z)\left(\bar\mu_{N-2}d_{N-2} +\mu_{N-1}d_{N-1}+\mu_{N}d_{N}\right)}{(l+1)}\\+\frac{\mu_{N}f_{N,z}^{(l+1)}}{(l+1)} ,~z=\bar\mu_{N-1},\\ \frac{\mu_{N}f_{N,z}^{(l)}+A^{*(l)}(z)\left(\bar\mu_{N-2}d_{N-2} +\mu_{N-1}d_{N-1}+\mu_{N}d_{N}\right)}{~z-\bar\mu_{N-1}}\\ - \frac{le_{N-1,z}^{(l-1)}}{~z-\bar\mu_{N-1}} ,~z\neq\bar\mu_{N-1}. \end{array} \right. \end{array} $$

For 1≤nN−2,

$$\begin{array}{@{}rcl@{}} e_{n,z}& =& \left\{ \begin{array}{l} \phi\left\{\gamma_{n+1} \zeta_{n+1,z}^{(1)}+\bar\gamma_{n} \zeta_{n,z}^{(1)} +A^{*(1)}(z)(\gamma_{n}\psi_{n}+\bar\gamma_{n-1}\psi_{n-1})\right\}\\+ \mu_{n+1}e_{n+1,z}^{(1)}+A^{*(1)}(z)(\bar\mu_{n-1}t_{n-1}+~\mu_{n}t_{n}), ~z=\bar\mu_{n},\\ \frac{\phi\left\{\gamma_{n+1} \zeta_{n+1,z}+\bar\gamma_{n} \zeta_{n,z}-(\gamma_{n+1}\psi_{n+1}+\bar\gamma_{n}\psi_{n}) \right\}+\mu_{n+1}e_{n+1,z}}{z-\bar\mu_{N-1}}\\ +\frac{A^{*}(z)(\gamma_{n}\psi_{n}+\bar\gamma_{n-1}\psi_{n-1})+A^{*}(z)(\bar\mu_{n-1}t_{n-1}+\mu_{n}t_{n})}{z-\bar\mu_{n}} \\ -\frac{(\mu_{n+1}t_{n+1}+\bar\mu_{n}t_{n})}{z-\bar\mu_{N-1}},~z\neq\bar\mu_{n}, \end{array} \right.\\ \\\\f_{n,z}& =& \left\{ \begin{array}{l} \mu_{n+1}f_{n+1,z}^{(1)}+A^{*(1)}(z)\left(\bar\mu_{n-1}d_{n-1} +\mu_{n}d_{n}\right), ~z=\bar\mu_{n},\\ \frac{\mu_{n+1}f_{n+1,z}+A^{*}(z)\left(\bar\mu_{n-1}d_{n-1} +\mu_{n}d_{n}\right)}{~z-\bar\mu_{n}}\\-\frac{(\bar \mu_{n}d_{n}+ \mu_{n+1}d_{n+1})}{~z-\bar\mu_{n}} ,~z\neq\bar\mu_{n}, \end{array} \right. \end{array} $$
$$\begin{array}{@{}rcl@{}} e_{n,z}^{(l)}& =& \left\{ \begin{array}{l} \phi\left\{\gamma_{n+1} \zeta_{n+1,z}^{(l+1)}+\bar\gamma_{n} \zeta_{n,z}^{(l+1)} +A^{*(l+1)}(z)(\gamma_{n}\psi_{n}+\bar\gamma_{n-1}\psi_{n-1})\right\}\\+ \mu_{n+1}e_{n+1,z}^{(l+1)}+A^{*(l+1)}(z)(\bar\mu_{n-1}t_{n-1}+~\mu_{n}t_{n}), ~z=\bar\mu_{n},\\ \frac{\phi\left\{\gamma_{n+1} \zeta_{n+1,z}^{(l)}+\bar\gamma_{n} \zeta_{n,z}^{(l)} +A^{*(l)}(z)(\gamma_{n}\psi_{n}+\bar\gamma_{n-1}\psi_{n-1})\right\}}{z-\bar\mu_{n}}\\+\frac{ \mu_{n+1}e_{n+1,z}^{(l)}+A^{*(l)}(z)(\bar\mu_{n-1}t_{n-1}+\mu_{n}t_{n})-le_{n,z}^{(l-1)}}{z-\bar\mu_{n}} ,~z\neq\bar\mu_{n}, \end{array} \right. \end{array} $$
$$\begin{array}{@{}rcl@{}} f_{n,z}^{(l)}& =& \left\{ \begin{array}{l} \mu_{n+1}f_{n+1,z}^{(l+1)}+A^{*(l+1)}(z)\left(\bar\mu_{n-1}d_{n-1} +\mu_{n}d_{n}\right), ~z=\bar\mu_{n},\\ \frac{\mu_{n+1}f_{n+1,z}^{(l)}+A^{*(l)}(z)\left(\bar\mu_{n-1}d_{n-1} +\mu_{n}d_{n}\right)-le_{n,z}^{(l-1)}}{~z-\bar\mu_{n}} ,~z\neq\bar\mu_{n}. \end{array} \right. \end{array} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laxmi, P.V., Suchitra, V. Discrete-time renewal input state dependent queue with working vacations and change over time. OPSEARCH 52, 285–306 (2015). https://doi.org/10.1007/s12597-014-0185-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12597-014-0185-2

Keywords

Navigation