Skip to main content
Log in

Molecular embryology for an understanding of congenital heart diseases

  • Special Issue on Cardiovascular Development
  • Review Article
  • Published:
Anatomical Science International Aims and scope Submit manuscript

Abstract

Congenital heart diseases (CHD) result from abnormal morphogenesis of the embryonic cardiovascular system and usually involve defects in specific structural components of the developing heart and vessels. Therefore, an understanding of “Molecular Embryology”, with specific focus on the individual modular steps involved in cardiovascular morphogenesis, is particularly relevant to those wishing to have a better insight into the origin of CHD. Recent advances in molecular embryology suggest that the cardiovascular system arises from multiple distinct embryonic origins, and a population of myocardial precursor cells in the pharyngeal mesoderm anterior to the early heart tube, denoted the “second heart field”, has been identified. Discovery of the second heart field has important implications for the interpretation of cardiac outflow tract development and provides new insights into the morphogenesis of CHD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Berridge MJ, Bootman MD, Roderick L (2003) Calcium signaling: dynamics, homeostasis and remodeling. Nat Rev Mol Cell Biol 4:517–529

    Article  PubMed  CAS  Google Scholar 

  • Buckingham M, Meilhac S, Zaffran S (2005) Building the mammalian heart from two sources of myocardial cells. Nat Rev Genet 6:826–835

    Article  PubMed  CAS  Google Scholar 

  • Cai CL, Liang X, Shi Y et al (2003) Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Dev Cell 5:877–889

    Article  PubMed  CAS  Google Scholar 

  • Cirillo LA, Lin FR, Cuesta I et al (2002) Opening of compacted chromatin by early developmental transcription factors HNF3 (FoxA) and GATA-4. Mol Cell 9:279–289

    Article  PubMed  CAS  Google Scholar 

  • Gruber PJ, Epstein JA (2004) Development gone awry congenital heart disease. Circ Res 94:273–283

    Article  PubMed  CAS  Google Scholar 

  • Hu T, Yamagishi H, Maeda J et al (2004) Tbx1 regulates fibroblast growth factors in the anterior heart field through a reinforcing autoregulatory loop involving forkhead transcription factors. Development 131:5491–5502

    Article  PubMed  CAS  Google Scholar 

  • Hutson MR, Kirby ML (2007) Model systems for the study of heart development and disease: cardiac neural crest and conotruncal malformations. Semin Cell Dev Biol 18:101–110

    Article  PubMed  CAS  Google Scholar 

  • Jerome LA, Papaioannou VE (2001) DiGeorge syndrome phenotype in mice mutant for the T-box gene, Tbx1. Nat Genet 27:286–291

    Article  PubMed  CAS  Google Scholar 

  • Kelly RG, Brown NA, Buckingham ME (2001) The arterial pole of the mouse heart forms from Fgf10-expressing cells in pharyngeal mesoderm. Dev Cell 1:435–440

    Article  PubMed  CAS  Google Scholar 

  • Kirby ML, Gale TF, Stewart DE (1983) Neural crest cells contribute to normal aorticopulmonary septation. Science 220:1059–1061

    Article  PubMed  CAS  Google Scholar 

  • Kume T, Jiang H, Topczewska JM, Hogan BL (2001) The murine winged helix transcription factors, Foxc1 and Foxc2, are both required for cardiovascular development and somitogenesis. Genes Dev 15:2470–2482

    Article  PubMed  CAS  Google Scholar 

  • Lindsay EA, Vitelli F, Su H et al (2001) Tbx1 haploinsufficieny in the DiGeorge syndrome region causes aortic arch defects in mice. Nature 410:97–101

    Article  PubMed  CAS  Google Scholar 

  • Maeda J, Yamagishi H, McAnally J et al (2006) Tbx1 is regulated by forkhead proteins in the secondary heart field. Dev Dyn 235:701–710

    Article  PubMed  CAS  Google Scholar 

  • Merscher S, Funke B, Epstein JA et al (2001) TBX1 is responsible for cardiovascular defects in velo-cardio-facial/DiGeorge syndrome. Cell 104:619–629

    Article  PubMed  CAS  Google Scholar 

  • Mikawa T, Gourdie RG (1996) Pericardial mesoderm generates a population of coronary smooth muscle cells migrating into the heart along with ingrowth of the epicardial organ. Dev Biol 174:221–232

    Article  PubMed  CAS  Google Scholar 

  • Mjaatvedt CH, Nakaoka T, Moreno-Rodriguez R et al (2001) The outflow tract of the heart is recruited from a novel heart-forming field. Dev Biol 238:97–109

    Article  PubMed  CAS  Google Scholar 

  • Moorman AF, Soufan AT, Hagoort J et al (2004) Development of the building plan of the heart. Ann N Y Acad Sci 1015:171–181

    Article  PubMed  Google Scholar 

  • Olson EN (2004) A decade of discoveries in cardiac biology. Nat Med 10:467–474

    Article  PubMed  CAS  Google Scholar 

  • Seo S, Kume T (2006) Forkhead transcription factors, Foxc1 and Foxc2, are required for the morphogenesis of the cardiac outflow tract. Dev Biol 296:421–436

    Article  PubMed  CAS  Google Scholar 

  • Siwik ES, Patel CR, Zahka KG (2001) Tetralogy of Fallot. In: Allen HD, Gutgesell HP, Clark EB, Driscoll DJ (eds) Moss and Adams’ heart disease in infants, children, and adolescents including the fetus and young adult. Lippincott, Williams & Wilkins, Philadelphia, pp 880–902

    Google Scholar 

  • Soriano P (1999) Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet 21:70–71

    Article  PubMed  CAS  Google Scholar 

  • Srivastava D (2006) Making or breaking the heart: from lineage determination to morphogenesis. Cell 126:1037–1041

    Article  PubMed  CAS  Google Scholar 

  • Srivastava D, Olson EN (2000) A genetic blueprint for cardiac development. Nature 407:221–226

    Article  PubMed  CAS  Google Scholar 

  • von Both I, Silvestri C, Erdemir T et al (2004) Foxh1 is essential for development of the anterior heart field. Dev Cell 7:331–345

    Article  Google Scholar 

  • Waldo KL, Kumiski DH, Wallis KT et al (2001) Conotruncal myocardium arises from a secondary heart field. Development 128:3179–3188

    PubMed  CAS  Google Scholar 

  • Waldo KL, Hutson MR, Stadt HA et al (2005) Cardiac neural crest is necessary for normal addition of the myocardium to the arterial pole from the secondary heart field. Dev Biol 281:66–77

    Article  PubMed  CAS  Google Scholar 

  • Ward C, Stadt H, Hutson M et al (2005) Ablation of the secondary heart field leads to tetralogy of Fallot and pulmonary atresia. Dev Biol 284:72–83

    Article  PubMed  CAS  Google Scholar 

  • Xu H, Morishima M, Wylie JN et al (2004) Tbx1 has a dual role in the morphogenesis of the cardiac outflow tract. Development 131:3217–3227

    Article  PubMed  CAS  Google Scholar 

  • Yamagishi H (2002) The 22q11.2 deletion syndrome. Keio J Med 51:77–88

    PubMed  CAS  Google Scholar 

  • Yamagishi H, Srivastava D (2003) Unraveling the genetic and developmental mysteries of 22q11 deletion syndrome. Trends Mol Med 9:383–389

    Article  PubMed  CAS  Google Scholar 

  • Yamagishi H, Maeda J, Hu T et al (2003) Tbx1 is regulated by tissue-specific forkhead proteins through a common Sonic hedgehog-responsive enhancer. Genes Dev 17:269–281

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr. Deepak Srivastava for his support, and Dr. Katsuhiko Mikoshiba for collaboration in the IP3R project. Research in our laboratory is supported by funding from the Ministry of Education and Science and Automobile Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Yamagishi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamagishi, H., Maeda, J., Uchida, K. et al. Molecular embryology for an understanding of congenital heart diseases. Anat Sci Int 84, 88–94 (2009). https://doi.org/10.1007/s12565-009-0023-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12565-009-0023-4

Keywords

Navigation