Skip to main content
Log in

Nuclear cardiology needs new “blood”

  • Editorial Point of View
  • Published:
Journal of Nuclear Cardiology Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Klocke FJ, Baird MG, Lorell BH, Bateman TM, Messer JV, Berman DS, et al. ACC/AHA/ASNC guidelines for the clinical use of cardiac radionuclide imaging—executive summary: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/ASNC Committee to Revise the 1995 Guidelines for the Clinical Use of Cardiac Radionuclide Imaging). J Am Coll Cardiol 2003;42:1318-33.

    Article  PubMed  Google Scholar 

  2. Redberg RF, Walsh J. Pay now, benefits may follow—the case of cardiac computed tomographic angiography. N Engl J Med 2008;359:2309-11.

    Article  PubMed  CAS  Google Scholar 

  3. Zaret BL, Strauss HW, Martin ND, Wells HP Jr, Flamm MD Jr. Noninvasive regional myocardial perfusion with radioactive potassium. Study of patients at rest, with exercise and during angina pectoris. N Engl J Med 1973;288:809-12.

    PubMed  CAS  Google Scholar 

  4. Bergmann SR, Fox KA, Rand AL, McElvany KD, Welch MJ, Markham J, et al. Quantification of regional myocardial blood flow in vivo with H 152 O. Circulation 1984;70:724-33.

    PubMed  CAS  Google Scholar 

  5. Hutchins GD, Schwaiger M, Rosenspire KC, Krivokapich J, Schelbert H, Kuhl DE. Noninvasive quantification of regional blood flow in the human heart using N-13 ammonia and dynamic positron emission tomographic imaging. J Am Coll Cardiol 1990;15:1032-42.

    Article  PubMed  CAS  Google Scholar 

  6. DiCarli MF, Hachamovitch R. New technology for noninvasive evaluation of coronary artery disease. Circulation 2007;115:1464-80.

    Article  Google Scholar 

  7. Gould KL, Lipscomb K. Effects of coronary stenoses on coronary flow reserve and resistance. Am J Cardiol 1974;34:48-55.

    Article  PubMed  CAS  Google Scholar 

  8. Uren NG, Melin JA, De Bruyne B, Wijns W, Baudhuin T, Camici PG. Relation between myocardial blood flow and the severity of coronary-artery stenosis. N Engl J Med 1994;330:1782-8.

    Article  PubMed  CAS  Google Scholar 

  9. Dayanikli F, Grambow D, Muzik O, Mosca L, Rubenfire M, Schwaiger M. Early detection of abnormal coronary flow reserve in asymptomatic men at high risk for coronary artery disease using positron emission tomography. Circulation 1994;90:808-17.

    PubMed  CAS  Google Scholar 

  10. Schindler TH, Nitzsche EU, Schelbert HR, Olschewski M, Sayre J, Mix M, et al. Positron emission tomography-measured abnormal responses of myocardial blood flow to sympathetic stimulation are associated with the risk of developing cardiovascular events. J Am Coll Cardiol 2005;45:1505-12.

    Article  PubMed  Google Scholar 

  11. Neglia D, Michelassi C, Trivieri MG, Sambuceti G, Giorgetti A, Pratali L, et al. Prognostic role of myocardial blood flow impairment in idiopathic left ventricular dysfunction. Circulation 2002;105:186-93.

    Article  PubMed  Google Scholar 

  12. Cecchi F, Olivotto I, Gistri R, Lorenzoni R, Chiriatti G, Camici PG. Coronary microvascular dysfunction and prognosis in hypertrophic cardiomyopathy. N Engl J Med 2003;349:1027-35.

    Article  PubMed  CAS  Google Scholar 

  13. Schächinger V, Britten MB, Zeiher AM. Prognostic impact of coronary vasodilator dysfunction on adverse long-term outcome of coronary heart disease. Circulation 2000;101:1899-906.

    PubMed  Google Scholar 

  14. Goldstein RA, Mullani NA, Marani SK, Fisher DJ, Gould KL, O’Brien HA Jr. Myocardial perfusion with rubidium-82. II. Effects of metabolic and pharmacologic intervention. J Nucl Med 1983;24:907-15.

    PubMed  CAS  Google Scholar 

  15. Marshall RC, Powers-Risius P, Reutter BW, O’Neil JP, La Belle M, Huesman RH, et al. Kinetic analysis of 18F-fluorodihydrorotenone as a deposited myocardial flow tracer: Comparison to 201Tl. J Nucl Med 2004;45:1950-9.

    PubMed  CAS  Google Scholar 

  16. Madar I, Ravert H, Dipaula A, Du Y, Dannals RF, Becker L. Assessment of severity of coronary artery stenosis in a canine model using the PET agent 18F-fluorobenzyl triphenyl phosphonium: Comparison with 99mTc-tetrofosmin. J Nucl Med 2007;48:1021-30.

    Article  PubMed  CAS  Google Scholar 

  17. Yalamanchili P, Wexler E, Hayes M, Yu M, Bozek J, Kagan M, et al. Mechanism of uptake and retention of F-18 BMS-747158-02 in cardiomyocytes: A novel PET myocardial imaging agent. J Nucl Cardiol 2007;14:782-8.

    Article  PubMed  Google Scholar 

  18. Yu M, Guaraldi MT, Mistry M, Kagan M, McDonald JL, Drew K, et al. BMS-747158-02: A novel PET myocardial perfusion imaging agent. J Nucl Cardiol 2007;14:789-98.

    Article  PubMed  CAS  Google Scholar 

  19. Schuler F, Casida JE. The insecticide target in the PSST subunit of complex I. Pest Manag Sci 2001;57:932-40.

    Article  PubMed  CAS  Google Scholar 

  20. Huisman MC, Higuchi T, Reder S, Nekolla SG, Poethko T, Wester HJ, et al. Initial characterization of an 18F-labeled myocardial perfusion tracer. J Nucl Med 2008;49:630-6.

    Article  PubMed  Google Scholar 

  21. Higuchi T, Nekolla SG, Huisman MM, Reder S, Poethko T, Yu M, et al. A new 18F-labeled myocardial PET tracer: Myocardial uptake after permanent and transient coronary occlusion in rats. J Nucl Med 2008;49:1715-22.

    Article  PubMed  Google Scholar 

  22. Nekolla S, Reder S, Saraste A, Dewas G, Preissl A, Huisman M, et al. Initial characterization of the myocardial perfusion PET agent 18-F-BMS-747158-02 in comparison to 13-N ammonia and microspheres in a pig model. Eur J Nucl Med Mol Imaging 2008;35:S195 (abstract).

    Google Scholar 

  23. Sherif HM, Saraste A, Higuchi T, Reder S, Weidl E, Weber A, et al. Evaluation of the novel PET perfusion tracer 18F BMS747158-02 for measurement of myocardial infarct size in a rat model of permanent left coronary artery ligation and ischemia-reperfusion. Eur J Nucl Med Mol Imaging 2008;35:S194 (abstract).

    Google Scholar 

  24. Maddahi J, Schiepers C, Czernin J, Huang H, Schelbert H, Wijatyk A, et al. First human study of BMS747158, a novel F-18 labeled tracer for myocardial perfusion imaging. J Nucl Med 2008;49:70P (abstract).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Schwaiger MD.

Additional information

Financial assistance for this project was provided by EC-FP6-project DiMI (LSHB-CT-2005-512146), Finnish Foundation for Cardiovascular Research, Bristol-Myers Squib Medical Imaging.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saraste, A., Nekolla, S. & Schwaiger, M. Nuclear cardiology needs new “blood”. J. Nucl. Cardiol. 16, 180–183 (2009). https://doi.org/10.1007/s12350-009-9055-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-009-9055-3

Keywords

Navigation