Skip to main content
Log in

3-D structure and dynamics of protein kinase B—new mechanism for the allosteric regulation of an AGC kinase

  • Review
  • Published:
Journal of Chemical Biology

Abstract

New developments regarding the structure and in vivo dynamics of protein kinase B (PKB/Akt) have been recently exposed. Here, we specifically review how the use of multi-disciplinary approaches has resulted in reaching the recent progress made to relate the quaternary structure of PKB to its in vivo function. Using X-ray crystallography, the structure of PKB pleckstrin homology (PH) and kinase domains was determined separately. The molecular mechanisms involved in (a) the binding of the phosphoinositides to the PH domain and (b) the activation of the kinase with the rearrangement of the catalytic site and substrate binding were determined. In vitro, nuclear magnetic resonance and circular dychroism studies gave complementary information on the interaction of the PH domain with the phosphoinositides. However, the molecular nature and the function of the interactions between the PKB domains could not be deduced from the X-ray data since the full-length PKB has not been crystallised. In vitro, dynamic information on the inter-domain conformational changes related to PKB activation states emerged with the use of tandem mass spectrometry. Cell imaging and Förster resonance energy transfer provided in vivo dynamics. Molecular modelling and dynamic simulations in conjunction with mutagenesis and biochemical analysis were used to investigate the complex interactions between the PKB domains in vivo and understand at the molecular level how it linked to its activity. The compilation of the information obtained on the 3-D structure and the spatiotemporal dynamics of this widely studied oncogene could be applied to the study of other proteins. This inter-disciplinary approach led to a more profound understanding of PKB complex activation mechanism in vivo that will shed light onto new ideas and possibilities for modulating its activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Alcor D, Calleja V, Larijani B (2009) Revealing signaling in single cells by single- and two-photon fluorescence lifetime imaging microscopy. Methods Mol Biol 462:307

    CAS  Google Scholar 

  2. Alessi DR, Andjelkovic M, Caudwell B (1996) Mechanism of activation of protein kinase B by insulin and IGF-1. Embo J 15(23):6541

    CAS  Google Scholar 

  3. Alessi DR, Deak M, Casamayor A (1997) 3-Phosphoinositide-dependent protein kinase-1 (PDK1): structural and functional homology with the Drosophila DSTPK61 kinase. Curr Biol 7(10):776

    Article  CAS  Google Scholar 

  4. Ananthanarayanan B, Fosbrink M, Rahdar M (2007) Live-cell molecular analysis of Akt activation reveals roles for activation loop phosphorylation. J Biol Chem 282(50):366334

    Article  Google Scholar 

  5. Ananthanarayanan B, Ni Q, Zhang J (2005) Signal propagation from membrane messengers to nuclear effectors revealed by reporters of phosphoinositide dynamics and Akt activity. Proc Natl Acad Sci U S A 102(42):15081

    Article  CAS  Google Scholar 

  6. Andjelkovic M, Alessi DR, Meier R (1997) Role of translocation in the activation and function of protein kinase B. J Biol Chem 272(50):31515

    Article  CAS  Google Scholar 

  7. Andjelkovic M, Jakubowicz T, Cron P (1996) Activation and phosphorylation of a pleckstrin homology domain containing protein kinase (RAC-PK/PKB) promoted by serum and protein phosphatase inhibitors. Proc Natl Acad Sci U S A 93(12):5699

    Article  CAS  Google Scholar 

  8. Auguin D, Barthe P, Auge-Senegas MT (2004) Solution structure and backbone dynamics of the pleckstrin homology domain of the human protein kinase B (PKB/Akt). Interaction with inositol phosphates. J Biomol NMR 28(2):137

    Article  CAS  Google Scholar 

  9. Barnett SF, Bilodeau MT, Lindsley CW (2005a) The Akt/PKB family of protein kinases: a review of small molecule inhibitors and progress towards target validation. Curr Top Med Chem 5(2):109

    Article  CAS  Google Scholar 

  10. Barnett SF, Defeo-Jones D, Fu S (2005b) Identification and characterization of pleckstrin-homology-domain-dependent and isoenzyme-specific Akt inhibitors. Biochem J 385(Pt 2):399

    CAS  Google Scholar 

  11. Bellacosa A, Chan TO, Ahmed NN (1998) Akt activation by growth factors is a multiple-step process: the role of the PH domain. Oncogene 17(3):313

    Article  CAS  Google Scholar 

  12. Brazil DP, Hemmings BA (2001) Ten years of protein kinase B signalling: a hard Akt to follow. Trends Biochem Sci 26(11):657

    Article  CAS  Google Scholar 

  13. Brugge J, Hung MC, Mills GB (2007) A new mutational AKTivation in the PI3K pathway. Cancer Cell 12(2):104

    Article  CAS  Google Scholar 

  14. Calleja V, Alcor D, Laguerre M (2007) Intramolecular and intermolecular interactions of protein kinase B define its activation in vivo. PLoS Biol 5(4):e95

    Article  Google Scholar 

  15. Calleja V, Ameer-Beg SM, Vojnovic B (2003) Monitoring conformational changes of proteins in cells by fluorescence lifetime imaging microscopy. Biochem J 372(Pt 1):33

    Article  CAS  Google Scholar 

  16. Calleja V, Laguerre M, Parker PJ (2009) Role of a novel PH-kinase domain interface in PKB/Akt regulation: structural mechanism for allosteric inhibition. PLoS Biol 7(1):e17

    Article  Google Scholar 

  17. Cameron AJ, De Rycker M, Calleja V (2007) Protein kinases, from B to C. Biochem Soc Trans 35(Pt 5):1013

    CAS  Google Scholar 

  18. Chan TO, Rittenhouse SE, Tsichlis PN (1999) AKT/PKB and other D3 phosphoinositide-regulated kinases: kinase activation by phosphoinositide-dependent phosphorylation. Annu Rev Biochem 68:965

    Article  CAS  Google Scholar 

  19. Chen R, Kim O, Yang J (2001) Regulation of Akt/PKB activation by tyrosine phosphorylation. J Biol Chem 276(34):31858

    Article  CAS  Google Scholar 

  20. Cicenas J (2008) The potential role of Akt phosphorylation in human cancers. Int J Biol Markers 23(1):1

    CAS  Google Scholar 

  21. Collins BJ, Deak M, Arthur JS (2003) In vivo role of the PIF-binding docking site of PDK1 defined by knock-in mutation. EMBO J 22(16):4202

    Article  CAS  Google Scholar 

  22. Collins BJ, Deak M, Murray-Tait V (2005) In vivo role of the phosphate groove of PDK1 defined by knockin mutation. J Cell Sci 118(Pt 21):5023

    Article  CAS  Google Scholar 

  23. Conus NM, Hannan KM, Cristiano BE (2002) Direct identification of tyrosine 474 as a regulatory phosphorylation site for the Akt protein kinase. J Biol Chem 277(41):38021

    Article  CAS  Google Scholar 

  24. Feng J, Park J, Cron P (2004) Identification of a PKB/Akt hydrophobic motif Ser-473 kinase as DNA-dependent protein kinase. J Biol Chem 279(39):41189

    Article  CAS  Google Scholar 

  25. Ferguson KM, Kavran JM, Sankaran VG (2000) Structural basis for discrimination of 3-phosphoinositides by pleckstrin homology domains. Mol Cell 6(2):373

    Article  CAS  Google Scholar 

  26. Gambhir A, Hangyas-Mihalyne G, Zaitseva I (2004) Electrostatic sequestration of PIP2 on phospholipid membranes by basic/aromatic regions of proteins. Biophys J 86(4):2188

    Article  CAS  Google Scholar 

  27. Gao T, Furnari F, Newton AC (2005) PHLPP: a phosphatase that directly dephosphorylates Akt, promotes apoptosis, and suppresses tumor growth. Mol Cell 18(1):13

    Article  CAS  Google Scholar 

  28. Gold MG, Barford D, Komander D (2006) Lining the pockets of kinases and phosphatases. Curr Opin Struct Biol 16(6):693

    Article  CAS  Google Scholar 

  29. Green CJ, Goransson O, Kular GS et al (2008) Use of Akti and a drug-resistant mutant validates a critical role for PKB/Akt in the insulin-dependent regulation of glucose and system A amino acid uptake. J Biol Chem 283:27653–27667

    Article  CAS  Google Scholar 

  30. Hauge C, Antal TL, Hirschberg D (2007) Mechanism for activation of the growth factor-activated AGC kinases by turn motif phosphorylation. EMBO J 26(9):2251

    Article  CAS  Google Scholar 

  31. Huang BX, Kim HY (2006) Interdomain conformational changes in Akt activation revealed by chemical cross-linking and tandem mass spectrometry. Mol Cell Proteomics 5(6):1045

    Article  CAS  Google Scholar 

  32. Huang X, Begley M, Morgenstern KA (2003) Crystal structure of an inactive Akt2 kinase domain. Structure 11(1):21

    Article  Google Scholar 

  33. Ikenoue T, Inoki K, Yang Q (2008) Essential function of TORC2 in PKC and Akt turn motif phosphorylation, maturation and signalling. EMBO J 27(14):1919

    Article  CAS  Google Scholar 

  34. Jeffrey PD, Russo AA, Polyak K (1995) Mechanism of CDK activation revealed by the structure of a cyclinA–CDK2 complex. Nature 376(6538):313

    Article  CAS  Google Scholar 

  35. Kannan N, Haste N, Taylor SS (2007) The hallmark of AGC kinase functional divergence is its C-terminal tail, a cis-acting regulatory module. Proc Natl Acad Sci U S A 104(4):1272

    Article  CAS  Google Scholar 

  36. Kim C, Xuong NH, Taylor SS (2005) Crystal structure of a complex between the catalytic and regulatory (RIalpha) subunits of PKA. Science 307(5710):690

    Article  CAS  Google Scholar 

  37. Knighton DR, Zheng JH, Ten Eyck LF (1991) Crystal structure of the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase. Science 253(5018):407

    Article  CAS  Google Scholar 

  38. Kunkel MT, Ni Q, Tsien RY (2005) Spatio-temporal dynamics of protein kinase B/Akt signaling revealed by a genetically encoded fluorescent reporter. J Biol Chem 280(7):5581

    Article  CAS  Google Scholar 

  39. Laguerre M, Saux M, Dubost J-P (1997) MLPP: a program for the calculation of molecular lipophilicity in proteins. Pharm. Sci 3:217

    CAS  Google Scholar 

  40. Lasserre R, Guo XJ, Conchonaud F (2008) Raft nanodomains contribute to Akt/PKB plasma membrane recruitment and activation. Nat Chem Biol 4(9):538

    Article  CAS  Google Scholar 

  41. Lindsley CW, Zhao Z, Leister WH (2005) Allosteric Akt (PKB) inhibitors: discovery and SAR of isozyme selective inhibitors. Bioorg Med Chem Lett 15(3):761

    Article  CAS  Google Scholar 

  42. Manning BD, Cantley LC (2007) AKT/PKB signaling: navigating downstream. Cell 129(7):1261

    Article  CAS  Google Scholar 

  43. Meier R, Thelen M, Hemmings BA (1998) Inactivation and dephosphorylation of protein kinase Balpha (PKBalpha) promoted by hyperosmotic stress. EMBO J 17(24):7294

    Article  CAS  Google Scholar 

  44. Milburn CC, Deak M, Kelly SM (2003) Binding of phosphatidylinositol 3,4,5-trisphosphate to the pleckstrin homology domain of protein kinase B induces a conformational change. Biochem J 375(Pt 3):531

    Article  CAS  Google Scholar 

  45. Mora A, Komander D, van Aalten DM (2004) PDK1, the master regulator of AGC kinase signal transduction. Semin Cell Dev Biol 15(2):161

    Article  CAS  Google Scholar 

  46. Newton AC (2003) Regulation of the ABC kinases by phosphorylation: protein kinase C as a paradigm. Biochem J 370(Pt 2):361

    Article  CAS  Google Scholar 

  47. Nolen B, Taylor S, Ghosh G (2004) Regulation of protein kinases; controlling activity through activation segment conformation. Mol Cell 15(5):661

    Article  CAS  Google Scholar 

  48. Obata T, Yaffe MB, Leparc GG (2000) Peptide and protein library screening defines optimal substrate motifs for AKT/PKB. J Biol Chem 275(46):36108

    Article  CAS  Google Scholar 

  49. Parsons DW, Wang TL, Samuels Y (2005) Colorectal cancer: mutations in a signalling pathway. Nature 436(7052):792

    Article  CAS  Google Scholar 

  50. Pellicena P, Kuriyan J (2006) Protein–protein interactions in the allosteric regulation of protein kinases. Curr Opin Struct Biol 16(6):702

    Article  CAS  Google Scholar 

  51. Sable CL, Filippa N, Filloux C (1998) Involvement of the pleckstrin homology domain in the insulin-stimulated activation of protein kinase B. J Biol Chem 273(45):29600

    Article  CAS  Google Scholar 

  52. Sarbassov DD, Guertin DA, Ali SM (2005) Phosphorylation and regulation of Akt/PKB by the rictor–mTOR complex. Science 307(5712):1098

    Article  CAS  Google Scholar 

  53. Sasaki K, Sato M, Umezawa Y (2003) Fluorescent indicators for Akt/protein kinase B and dynamics of Akt activity visualized in living cells. J Biol Chem 278(33):30945

    Article  CAS  Google Scholar 

  54. Scheid MP, Woodgett JR (2001) PKB/AKT: functional insights from genetic models. Nat Rev Mol Cell Biol 2(10):760

    Article  CAS  Google Scholar 

  55. Shi Z, Resing KA, Ahn NG (2006) Networks for the allosteric control of protein kinases. Curr Opin Struct Biol 16(6):686

    Article  CAS  Google Scholar 

  56. Stephens L, Anderson K, Stokoe D (1998) Protein kinase B kinases that mediate phosphatidylinositol 3,4,5-trisphosphate-dependent activation of protein kinase B. Science 279(5351):710

    Article  CAS  Google Scholar 

  57. Testa JR, Tsichlis PN (2005) AKT signaling in normal and malignant cells. Oncogene 24(50):7391

    Article  CAS  Google Scholar 

  58. Thomas CC, Deak M, Alessi DR (2002) High-resolution structure of the pleckstrin homology domain of protein kinase b/akt bound to phosphatidylinositol (3,4,5)-trisphosphate. Curr Biol 12(14):1256

    Article  CAS  Google Scholar 

  59. Toker A, Newton AC (2000) Akt/protein kinase B is regulated by autophosphorylation at the hypothetical PDK-2 site. J Biol Chem 275(12):8271

    Article  CAS  Google Scholar 

  60. Tokunaga E, Oki E, Egashira A (2008) Deregulation of the Akt pathway in human cancer. Curr Cancer Drug Targets 8(1):27

    Article  CAS  Google Scholar 

  61. Yang J, Cron P, Good VM (2002a) Crystal structure of an activated Akt/protein kinase B ternary complex with GSK3-peptide and AMP-PNP. Nat Struct Biol 9(12):940

    Article  CAS  Google Scholar 

  62. Yang J, Cron P, Thompson V (2002b) Molecular mechanism for the regulation of protein kinase B/Akt by hydrophobic motif phosphorylation. Mol Cell 9(6):1227

    Article  CAS  Google Scholar 

  63. Zhang J, Allen MD (2007) FRET-based biosensors for protein kinases: illuminating the kinome. Mol Biosyst 3(11):759

    Article  CAS  Google Scholar 

  64. Zhang L, Lee KC, Bhojani MS (2007) Molecular imaging of Akt kinase activity. Nat Med 13(9):1114

    Article  CAS  Google Scholar 

  65. Zhao Z, Leister WH, Robinson RG (2005) Discovery of 2,3,5-trisubstituted pyridine derivatives as potent Akt1 and Akt2 dual inhibitors. Bioorg Med Chem Lett 15(4):905

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Richard Byrne for the critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Véronique Calleja.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calleja, V., Laguerre, M. & Larijani, B. 3-D structure and dynamics of protein kinase B—new mechanism for the allosteric regulation of an AGC kinase. J Chem Biol 2, 11–25 (2009). https://doi.org/10.1007/s12154-009-0016-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12154-009-0016-8

Keywords

Navigation