Skip to main content
Log in

Isolation of a Chitinolytic Bacillus licheniformis S213 Strain Exerting a Biological Control Against Phoma medicaginis Infection

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Among nine chitinase-producing strains isolated from Tunisian soil, one isolate called S213 exhibited a potent chitinolytic activity. S213 strain was identified as Bacillus licheniformis by API 50CH system and sequence analysis of its partial 16S ribosomal DNA. Chitinolytic activity was induced either by colloidal chitin or fungal cell walls, and the highest chitinase activity reached at the late stationary phase exhibiting optimal temperature and pH of 50–60 °C and pH 6.0, respectively. SDS-PAGE analysis of the secreted colloidal chitin-induced proteins showed a major protein of about 65 kDa. This protein was identified as chitinase on the basis of its peptide sequences which displayed high homology with chitinase sequence of B. licheniformis ATCC 14580. Moreover, chitinolytic activity containing supernatant inhibited the growth of several phytopathogenic fungi including Phoma medicaginis. Interestingly, S213 strain reduced efficiently the damping-off disease caused by P. medicaginis in Medicago truncatula and should be envisaged in enzyme-based biopesticides against phytopathogen application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wang, S., Ye, X., Chen, J., & Rao, P. (2012). Food Research International, 45, 116–122.

    Article  CAS  Google Scholar 

  2. Hariprasad, P., Divakara, S. T., & Niranjana, S. R. (2011). Crop Protection, 30, 1606–1612.

    Article  Google Scholar 

  3. Yuli, P. E., Suhartono, M. T., Rukayadi, Y., Hwang, J. K., & Pyun, Y. R. (2004). Enzyme and Microbial Technology, 35, 147–153.

    Article  CAS  Google Scholar 

  4. Merun, H., & Donthiraddy, S. R. S. (2014). Applied Biochemistry and Biotechnology, 172, 196–205.

    Article  Google Scholar 

  5. Singh, A. K., & Chhatpar, H. S. (2011). Applied Biochemistry and Biotechnology, 164, 77–88.

    Article  CAS  Google Scholar 

  6. Green, A. T., Healy, M. G., & Healy, A. (2005). Journal of Chemical Technology and Biotechnology, 80, 28–34.

    Article  CAS  Google Scholar 

  7. Swiontek-Brzezinska, M., Jankiewicz, U., Burkowska, A., & Walczak, M. (2014). Current Microbiology, 68, 71–81.

    Article  CAS  Google Scholar 

  8. Jankiewicz, U., Brzezinska, M. S., & Saks, E. (2012). Journal of Bioscience and Bioengineering, 113, 30–35.

    Article  CAS  Google Scholar 

  9. Stein, T. (2005). Molecular Microbiology, 56, 845–857.

    Article  CAS  Google Scholar 

  10. Chung, S., Kong, H., Buyer, J. S., Lakshman, D. K., Lydon, J., Kim, S. D., & Roberts, D. P. (2008). Applied Microbiology and Biotechnology, 80, 115–123.

    Article  CAS  Google Scholar 

  11. Gajbhiye, A., Rai, A. R., Meshram, S. U., & Dongre, A. B. (2010). World Journal of Microbiology and Biotechnology, 26, 1187–1194.

    Article  CAS  Google Scholar 

  12. Singh, N., Pandey, P., Dubey, R. C., & Maheshwari, D. K. (2008). World Journal of Microbiology and Biotechnology, 9, 1669–1679.

    Article  Google Scholar 

  13. Chang, W. T., Chen, M. L., & Wang, S. L. (2010). World Journal of Microbiology and Biotechnology, 26, 945–950.

    Article  CAS  Google Scholar 

  14. Prasanna, L., Eijsink, V. G., Meadow, R., & Gåseidnes, S. (2013). Applied Microbiology and Biotechnology, 97, 1601–1611.

    Article  CAS  Google Scholar 

  15. Huet, J., Wyckmans, J., & Wintjens, R. (2006). Cellular and Molecular Life Sciences, 63, 3042–3054.

    Article  CAS  Google Scholar 

  16. Hoster, F., Schmitz, J. E., & Daniel, R. (2005). Applied Microbiology and Biotechnology, 66, 434–442.

    Article  CAS  Google Scholar 

  17. Saima, M. K., & Roohi, I. Z. A. (2013). Journal of Genetic Engineering and Biotechnology, 11, 39–46.

    Article  Google Scholar 

  18. Vu, K. D., Yan, S., Tyagi, R. D., Valéro, J. R., & Surampalli, R. Y. (2009). Bioresource Technology, 100, 5260–5269.

    Article  CAS  Google Scholar 

  19. Gohel, V., Singh, A., Vimal, M., Ashwini, P., & Chhatpar, H. S. (2006). African Journal of Biotechnology, 5, 54–72.

    Google Scholar 

  20. Hsu, S. C., & Lockwood, J. L. (1975). Applied Microbiology, 29, 422–426.

    CAS  Google Scholar 

  21. Miller, G. L. (1959). Analytical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  22. Laemmeli, U. K. (1970). Nature, 227, 680–685.

    Article  Google Scholar 

  23. Becard, G., & Fortin, J. A. (1988). New Phytologist, 108, 211–218.

    Article  CAS  Google Scholar 

  24. Djebali, N., Mhadhbi, H., Jacquet, C., Huguet, T., & Aouani, M. E. (2007). Journal of phytopathology, 10, 633–640.

    Article  Google Scholar 

  25. Kamil, Z., Saleh, M., & Moustafa, S. (2007). Global Journal of Molecular Sciences, 2, 57–66.

    Google Scholar 

  26. Wang, S. L., & Hwang, J. R. (2001). Enzyme and Microbial Technology, 28, 376–382.

    Article  CAS  Google Scholar 

  27. Gomaa, E. Z. (2012). The Journal of Microbiology, 50, 103–111.

    Article  CAS  Google Scholar 

  28. Kudan, S., & Pichyangkura, R. (2009). Applied Biochemistry and Biotechnology, 157, 23–35.

    Article  CAS  Google Scholar 

  29. Toharisman, A., Suhartono, T. M., Spindler-Barth, M., Hwang, J. K., & Pyun, Y. R. (2015). World Journal of Microbiology and Biotechnology, 21, 733–738.

    Article  Google Scholar 

  30. Sandalli, C., Kanagan, M., Canakci, S., & Belduz, A. O. (2008). Annals of Microbiology, 58, 245–251.

    Article  CAS  Google Scholar 

  31. Dai, D. H., Hu, W. L., Huang, G. R., & Li, W. (2011). African Journal of Biotechnology, 10, 2476–2485.

    CAS  Google Scholar 

  32. Liang, T. W., Hsieh, T. Y., & Wang, S. L. (2014). Bioprocess and Biosystems Engineering, 37, 1201–1209.

    Article  CAS  Google Scholar 

  33. Wang, S. I., & Chang, W. T. (1997). Applied of Environmental Microbiology, 63, 380–386.

    CAS  Google Scholar 

  34. Waghmare, S. R., & Ghosh, J. S. (2010). Carbohydrate Research, 345, 2630–2635.

    Article  CAS  Google Scholar 

  35. Abdel-Shakour, E. H. (2012). Life Science Journal, 9, 3560–3572.

    Google Scholar 

  36. Huang, C. J., Wang, T. K., Chung, S. C., & Chen, C. Y. (2005). Journal of Biochemistry and Molecular Biology, 38, 82–88.

    Article  CAS  Google Scholar 

  37. Reyes-Ramirez, A., Escudero-Abarca, B. I., Aguilar-Uscanga, G., Hayward-Jones, P. M., & Barboza-Corona, J. E. (2004). Journal of Food Sciences, 69, 131–134.

    Article  Google Scholar 

  38. Xiao, L., Xie, C. C., Cai, J., Lin, Z. J., & Chen, Y. H. (2009). Current Microbiology, 58, 528–533.

    Article  CAS  Google Scholar 

  39. Dan, V. P., Mishra, S., Chaudry, V., Singh, P., Yadav, S., Mishra, S., Tripathi, S., Pushpangadan, P., Geaorge, V., Varma, A., & Nautiyal, C. S. (2012). Journal of Research in Microbes, 1, 77–82.

    Google Scholar 

  40. Lim, J. H., & Kim, S. D. (2010). Journal of Korean Society of Applied Biology and Chemistry, 53, 766–773.

    Article  Google Scholar 

  41. Ben Slimene, I., Tabbene, O., Djebali, N., Cosette, P., Schmitter, J. M., Jouenne, T., Urdaci, M. C., & Limam, F. (2012). Research in Microbiology, 163, 388–397.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by grants from the Tunisian Ministry of Higher Education, Scientific Research and Technologies of Information and Communication. We would like to thank Prof. Ezzedine Aouani for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferid Limam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slimene, I.B., Tabbene, O., Gharbi, D. et al. Isolation of a Chitinolytic Bacillus licheniformis S213 Strain Exerting a Biological Control Against Phoma medicaginis Infection. Appl Biochem Biotechnol 175, 3494–3506 (2015). https://doi.org/10.1007/s12010-015-1520-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1520-7

Keywords

Navigation