Skip to main content
Log in

Solids circulation rate and static bed height in a riser of a circulating fluidized bed

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Solids circulation rate and static bed height in the riser of a circulating fluidized bed (CFB) process, which consisted of a riser and two bubbling-beds, were investigated and discussed at ambient temperature and pressure. Three kinds of powder (FCC catalyst, glass bead, plastic powder) were used as bed materials. The static bed height in the riser increased with the solids circulation rate. However, it decreased with an increase of gas velocity. The effect of gas velocity diminished as the gas velocity increased. The riser static bed height could be used to estimate the solids circulation rate in reasonable accuracy. A correlation on static bed height in the riser, relating to the solids circulation rate, was proposed for the present experimental ranges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.-H. Choi, C.-K. Yi and S.-H. Jo, Korean J. Chem. Eng., 28, 1144 (2011).

    Article  CAS  Google Scholar 

  2. J.-H. Choi, C.-K. Yi, S.-H. Jo and H.-J. Ryu, Adv. Powder Technol., 22, 657 (2011).

    Article  CAS  Google Scholar 

  3. L. de Martin and J.R. van Ommen, Chem. Eng. J., 204–206, 125 (2012).

    Article  Google Scholar 

  4. D. Bai and K. Kato, Powder Technol., 101, 183 (1999).

    Article  CAS  Google Scholar 

  5. J.-H. Choi, C.-K. Yi and J.E. Son, Korean J. Chem. Eng., 7, 306 (1990).

    Article  CAS  Google Scholar 

  6. K. Kato, H. Shibasaki, K. Tamura, S. Arita, C. Wang and T. Takarada, J. Chem. Eng. Jpn., 22, 130 (1989).

    Article  CAS  Google Scholar 

  7. V.V.B. Rao, R.K. Saha and P. S. Gupta, Indian Chemical Engineer, Section A, J. of Indian Institute of Chemical Engineers, 38, 91 (1996).

    CAS  Google Scholar 

  8. H. Lei and M. Horio, J. Chem. Eng. Jpn., 31, 83 (1998).

    Article  CAS  Google Scholar 

  9. Y. Li and M. Kwauk, in Fluidization, J. R. Grace and J.M. Matsen Eds., Plenum Press, New York (1980).

  10. T. M. Knowlton, in Circulating fluidized beds, J. R. Grace, A. A. Avidan and T.M. Knowlton Eds., Blackie Academic & Professional, Chapman & Hall, New York (1997).

  11. D. Kunii and O. Levenspiel, Fluidization engineering, 2nd Ed., Butterworth-Heinemann, Boston (1991).

    Google Scholar 

  12. C.W. Chan, J.P.K. Seville, D. J. Parker and J. Baeyens, Powder Technol., 203, 187 (2010).

    Article  CAS  Google Scholar 

  13. H.T. Bi and J. R. Grace, Int. J. Multiphase Flow, 21, 1229 (1995).

    Article  CAS  Google Scholar 

  14. D. Geldart, Powder Technol., 7, 285 (1973).

    Article  CAS  Google Scholar 

  15. U. Arena, A. Cammarota and L. Pistone, in Circulating fluidized bed technology, P. Basu Eds., Pergamon Press, New York (1985).

  16. M. Louge and H. Chang, Powder Technol., 60, 197 (1990).

    Article  CAS  Google Scholar 

  17. C.M.H. Brereton and J.R. Grace, in Circulating fluidized bed technology IV, A. A. Avidan Eds., AIChE (1994).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeong-Hoo Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, D., Choi, JH., Khurram, M.S. et al. Solids circulation rate and static bed height in a riser of a circulating fluidized bed. Korean J. Chem. Eng. 32, 284–291 (2015). https://doi.org/10.1007/s11814-014-0209-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-014-0209-x

Keywords

Navigation