Skip to main content
Log in

Dependence of the Stabilization of α-Alumina on the Spray Process

  • PEER REVIEWED
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

A phase change from α-alumina (corundum) in the feedstock powder to predominantly other alumina phases, such as γ-alumina in the coating normally takes place, as a result of the spray process. It is expected that the prevention of this phase transformation will significantly improve the mechanical, electrical, and other properties of thermally sprayed alumina coatings. The results regarding the possibility of stabilization of α-alumina through addition of chromia published in the literature are ambiguous. In this work, stabilization using different spray processes (water-stabilized plasma (WSP), gas-stabilized plasma (APS), and high-velocity oxy-fuel spray (HVOF)) was studied. Mechanical mixtures of alumina and chromia were used, as were prealloyed powders consisting of solid solutions. The investigations focused on mechanical mixtures with both APS and WSP and on prealloyed powders with WSP. The coatings were studied by x-ray diffraction, including Rietveld analysis, and analysis of the lattice parameters. Microstructures were investigated by optical microscopy using metallographic cross-sections. It was shown that in the case of the mechanically mixed powders, the stabilization predominantly depends on the applied spray process. The stabilization of the α phase by use of the WSP process starting from mechanical mixtures was confirmed. It appears that stabilization exhibits a complex dependence on the spray process, the process parameters (in particular the thermal history), the nature of the powder (mechanically mixed or prealloyed), and the chromia content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. N.N. Ault, Characteristics of Refractory Oxide Coatings Produced by Flame Spraying, J. Am. Ceram. Soc., 1957, 40(3), p 69-74

    Article  CAS  Google Scholar 

  2. R. McPherson, Formation of Metastable Phases in Flame- and Plasma-Prepared Alumina, J. Mater. Sci., 1973, 8(6), p 851-858

    Article  CAS  Google Scholar 

  3. R. McPherson, A Review of Microstructure and Properties of Plasma Sprayed Ceramic Coatings, Surf. Coat. Technol., 1989, 39/40(1-3), p 173-181

    Article  Google Scholar 

  4. B. Dzur, Ein Beitrag zur Anwendung des induktiv gekoppelten Hochfrequenz-Plasmas zum atmosphärischen Plasmaspritzen oxidkeramischer Werkstoffe (A Contribution to the Application of Inductively Coupled HF-plasma to Atmospheric Plasma Spraying of Ceramic Oxide Materials), Dissertation, TU Ilmenau, 2002 (in German)

  5. B. Dzur, Das thermische, induktiv gekoppelte Hochfrequenzplasma: Grundlagen und Möglichkeiten einer außergewöhnlichen Technologie (The Thermal, Inductively Coupled HF-Plasma: Basics and Possibilities of an Extraordinary Technology), Jahrbuch Oberflächentechnik 2006, R. Suchentrunk, Ed., Bad Saulgau, Eugen G. Leuze Verlag, 2006, 62, p 131-142, in German

  6. G.N. Heintze, S. Uematsu, Preparation and Structures of Plasma-Sprayed γ- and α-Al2O3 Coatings, Surf. Coat. Technol., 1992, 50(3), p 213-222

    Article  CAS  Google Scholar 

  7. H. Kreye, Herstellung von Aluminiumoxidschichten mit verbesserten Eigenschaften (Preparation of Alumina Coatings with Improved Properties), University of the Federal Armed Forces Hamburg, Institute for Materials Technologies, Final Report, AiF-founded Project No. 11.466 N, 01.01.1998-31.12.1999, in German

  8. R. McPherson, On the Formation of Thermally Sprayed Alumina Coatings, J. Mater. Sci., 1980, 15(12), p 3141-3149

    Article  CAS  Google Scholar 

  9. R.S. Lima, C.P. Bergmann, Phase Transformations on Flame Sprayed Alumina, Thermal Spray: Practical Solutions for Engineering Problems, C.C. Berndt, Ed., (Cincinnati, OH), ASM International, 1996, p 765-771

    Google Scholar 

  10. K. Niemi, P. Vuoristo, T. Mäntylä, E. Lugscheider, J. Knuuttila, H. Jungklaus, Wear Characteristics of Oxide Coatings Deposited by Plasma Spraying, High Power Plasma Spraying and Detonation Gun Spraying, Advances in Thermal Spray Science & Technology, C.C. Berndt, S. Sampath, Ed., (Houston, TX), ASM International, 1995, p 645-650

    Google Scholar 

  11. J. Dubsky, V. Brozek, B. Kolman, and P. Chraska, Stabilization of α-Al2O3 Plasma Sprayed Coatings by Chromia, Ceramics, adding the value: AUSTCERAM 92, International Ceramic Conference, M.J. Bannister, Ed., Melbourne, 1992, p 793-797

  12. S. Costil, B. Normand, C. Coddet, A.B. Vannes, Alumina Plasma Sprayed Coatings Submitted to Cyclic Tribological Solicitations: Effect of TiO2 Content, International Thermal Spray Conference, E. Lugscheider, C.C. Berndt, Ed., (Essen, Germany), Düsseldorf, DVS-Verlag, 2002, p 944-948

    Google Scholar 

  13. J. Ilavsky, C.C. Berndt, H. Herman, P. Chraska, J. Dubsky, Alumina-Base Plasma-Sprayed Materials—Part II: Phase Transformation in Aluminas, J. Therm. Spray Technol. 1997, 6(4), p 439-444

    Article  CAS  Google Scholar 

  14. R. Venkataraman, P. Singh, R. Krishnamurthy, Enhanced α Phase Stability During Plasma Spraying of Alumina-13 mol% Titania, J. Am. Ceram. Soc., 2006, 89(2), p 734-736

    Article  CAS  Google Scholar 

  15. H. Saalfeld, Strukturuntersuchungen im System Al2O3-Cr2O3 (Structural Investigations in the Al2O3-Cr2O3 System), Z. Kristallogr., 1964, 120, p 342-348, in German

    Article  CAS  Google Scholar 

  16. K. Wefers and C. Misra, Oxides and Hydroxides of Aluminum, Alcoa Technical Paper, 19, Pittsburgh: Aluminum Company of America, 1987, 92 p

  17. L.R. Rossi, W.G. Lawrence, Elastic Properties of Oxide Solid Solutions: The System Al2O3-Cr2O3, J. Am. Ceram. Soc., 1970, 53(11), p 604-608

    Article  CAS  Google Scholar 

  18. M. Watanabe, T. Hirayama, M. Yoshinaka, K. Hirota, O. Yamaguchi, Formation of Continuous Series of Solid Solutions from Powders Prepared by Hydrazine Method: The System Cr2O3-Al2O3, Mater. Res. Bull., 1996, 31(7), p 861-868

    Article  CAS  Google Scholar 

  19. W. Sitte, Investigation of the Miscibility Gap of the System Chromia-Alumina below 1300 °C, Reactivity of Solids, Part A, Mater. Sci. Monographs, 1985, 28A, p 451-456

    CAS  Google Scholar 

  20. E.N. Bunting, Phase Equilibria in the System Cr2O3-Al2O3, J. Res. Natl. Bur. Stand. (U.S.), 1931, 6(6), p 947-949

    CAS  Google Scholar 

  21. P. Chráska, J. Dubský, K. Neufuss, J. Písacka, Alumina-Base Plasma-Sprayed Materials Part I: Phase Stability of Alumina and Alumina-Chromia, J. Therm. Spray Technol. 1997, 6(3), p 320-326

    Article  Google Scholar 

  22. J. Dubský, V. Řídký, B.J. Kolman, and P.J. Chráska, 2004, Properties of Plasma Sprayed Alumina-Chromia Mixtures, Thermal Spray 2004: Advances in Technology and Application, ASM International, May 10-12, 2004 (Osaka, Japan), Düsseldorf, DVS-Verlag, 4 p

  23. J. Dubský, B. Kolman, V. Brozek, and P. Chráska, The Chemical Inhomogeneity of Al2O3-Cr2O3 Powders for Plasma Spraying, Proc. of 16th Symposium on Plasma Physics and Technology, Czech Technical University, Prague, Czechoslovakia, 1993, p 267-273

  24. J.-H. Müller, H. Kreye, Mikrostruktur und Eigenschaften von thermisch gespritzten Aluminiumoxidschichten (Microstructure and Properties of Thermally Sprayed Alumina Coatings), Schweissen und Schneiden, 2001, 53(6), p 336-345, in German

    Google Scholar 

  25. J. Voyer, B.R. Marple, and C.-K. Jen, Plasma Sprayed Ceramic Coatings for Ultrasonic Wave Guidance in Severe Environments, United Thermal Spray Conference, E. Lugscheider and P.A. Kammer, Ed., March 17-19, 1999 (Düsseldorf, Germany), Düsseldorf, DVS-Verlag, 2002, p 630-635

  26. B. R. Marple, J. Voyer, P. Béchard, Sol Infiltration and Heat Treatment of Alumina Chromia Plasma-Sprayed Coatings, J. Eur. Cer. Soc., 2001, 21(7), p 861-868

    Article  CAS  Google Scholar 

  27. S. H. Yu and H. Wallar, Chromia Spray Powders and a Process for Making the Same, US 6,774,076, filed 03.09.2002, published 10.08.2004

  28. S. H. Yu and H. Wallar, Chromia Spray Powders, US 7,012,037, filed 08.04.2002, published 14.03.2006

  29. R.J. Damani, E.H. Lutz, Microstructure, Strength and Fracture Characteristics of a Free-Standing Plasma-Sprayed Alumina, J. Eur. Ceram. Soc., 1997, 17(11), p 1351-1359

    Article  CAS  Google Scholar 

  30. R. McPherson, The Relationship between the Mechanism of Formation, Microstructure and Properties of Plasma Sprayed Coatings, Thin Solid Films, 1981, 83(3), p 297-310

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work of the Czech authors was supported by the Czech research foundation (GACR, project number 106/05/0483). The authors would like to thank Ms. B. Wolf (Fh-IWS) for metallographic preparation of the coatings.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl Christoph Stahr.

Additional information

This article is an invited paper selected from presentations at the 2007 International Thermal Spray Conference and has been expanded from the original presentation. It is simultaneously published in Global Coating Solutions, Proceedings of the 2007 International Thermal Spray Conference, Beijing, China, May 14-16, 2007, Basil R. Marple, Margaret M. Hyland, Yuk-Chiu Lau, Chang-Jiu Li, Rogerio S. Lima, and Ghislain Montavon, Ed., ASM International, Materials Park, OH, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stahr, C., Saaro, S., Berger, LM. et al. Dependence of the Stabilization of α-Alumina on the Spray Process. J Therm Spray Tech 16, 822–830 (2007). https://doi.org/10.1007/s11666-007-9107-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-007-9107-7

Keywords

Navigation