Skip to main content
Log in

Novel Red-Emitting Microwave-Assisted-Sintered LiSrPO4: Eu3+ Phosphors for Application in Near-UV White Light-Emitting Diodes

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Novel red-emitting LiSr1−x PO4:xEu3+ phosphors with various concentrations (x = 0.03, 0.05, 0.07, 0.1) of Eu3+ ions were synthesized by microwave-assisted sintering at 1200°C for 3 h in air. The microstructural and luminescent characteristics of the LiSrPO4:Eu3+ phosphors were investigated and are discussed here. x-Ray diffraction (XRD) results showed that the prepared LiSr1−x PO4:xEu3+ phosphors presented an impurity phase of Eu2O3 when the Eu3+ ions exceeded x = 0.05. Photoluminescence (PL) results showed a series of emission states 5D0 → 7F0, 5D0 → 7F1, 5D0 → 7F2, 5D0 → 7F3, and 5D0 → 7F4 (corresponding to the typical 4f → 4f intraconfiguration forbidden transitions of Eu3+) with a major emission peak at around 617 nm. The optimum concentration of Eu3+ for LiSr1−x PO4:xEu3+ prepared by microwave-assisted sintering was found to be 0.05. The lifetime values of LiSr1−x PO4:xEu3+ phosphors with doping concentrations of Eu3+ ions of 0.03, 0.05, 0.07, and 0.1 were found to be 3.32 ms, 3.30 ms, 2.84 ms, and 2.60 ms, respectively. Moreover, the chromaticity values (x, y) of all of the LiSr1−x PO4:xEu3+ phosphors were located in the red region (0.65, 0.34).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.K. Sheu, S.J. Chang, C.H. Kuo, Y.K. Su, L.W. Wu, Y.C. Lin, W.C. Lai, J.M. Tsai, G.C. Chi, and R.K. Wu, IEEE Photonic Tech. Lett. 15, 18 (2003).

    Article  Google Scholar 

  2. K.N. Shinde and S.J. Dhoble, Luminescence 27, 91 (2012).

    Article  CAS  Google Scholar 

  3. A.K. Gulnar, V. Sudarsan, R.K. Vatsa, C. Hubli, U.K. Gautam, A. Vinu, and A.K. Tyagi, Cryst. Growth Des. 9, 2451 (2009).

    Article  CAS  Google Scholar 

  4. K. Srinivasu, R.S. Ningthoujam, V. Sudarsan, R.K. Vatsa, A.K. Tyagi, P. Srinivasu, and A. Vinu, J. Nanosci. Nanotechnol. 9, 3034 (2009).

    Article  CAS  Google Scholar 

  5. C.C. Lin, R.S. Liu, Y.S. Tang, and S.F. Hu, J. Electrochem. Soc. 155, J248 (2008).

    Article  CAS  Google Scholar 

  6. Z. Yang, G. Yang, S. Wang, J. Tian, X. Li, Q. Guo, and G. Fu, Mater. Lett. 62, 1884 (2008).

    Article  CAS  Google Scholar 

  7. Z. Wu, J. Liu, Q. Guo, and M. Gong, Chem. Lett. 37, 190 (2008).

    Article  CAS  Google Scholar 

  8. Y.K. Su, Y.M. Peng, R.Y. Yang, and J.L. Chen, Opt. Mater. 34, 1598 (2012).

    Article  CAS  Google Scholar 

  9. M.H. Weng, R.Y. Yang, Y.M. Peng, and J.L. Chen, Ceram. Int. 38, 1319 (2012).

    Article  CAS  Google Scholar 

  10. G. Pucker, K. Gatterer, H.P. Fritzer, M. Bettinelli, and M. Ferrari, Phys. Rev. B 53, 6225 (1996).

    Article  CAS  Google Scholar 

  11. J. Dhanaraj, R. Jagannathan, T.R.N. Kutty, and C.H. Lu, J. Phys. Chem. B 105, 11098 (2001).

    Article  CAS  Google Scholar 

  12. B. Yan and X.Q. Su, Mater. Sci. Eng. B 116, 196 (2005).

    Article  Google Scholar 

  13. R.Y. Yang, H.Y. Chen, C.M. Hsiung, and S.J. Chang, Ceram. Int. 37, 749 (2011).

    Article  CAS  Google Scholar 

  14. H.Y. Chen, R.Y. Yang, and S.J. Chang, Mater. Lett. 64, 2548 (2010).

    Article  CAS  Google Scholar 

  15. H.Y. Chen, M.H. Weng, S.J. Chang, and R.Y. Yang, Ceram. Int. 38, 125 (2011).

    Article  CAS  Google Scholar 

  16. J. Sun, X. Zhang, Z. Xia, and H. Du, Mater. Res. Bull. 46, 2179 (2011).

    Article  CAS  Google Scholar 

  17. F. Zhang, Y. Wang, and J. Liu, J. Alloys Compd. 509, 3852 (2011).

    Article  CAS  Google Scholar 

  18. K.N. Shinde, V.B. Pawade, S.J. Dhoble, and P.W. Yawalkar, Synth. React. Inorg. Metal Org. Nano Met. Chem. 41, 517 (2011).

    CAS  Google Scholar 

  19. D. Jia and W.M. Yen, J. Luminescence 101, 115 (2003).

    Article  CAS  Google Scholar 

  20. K.N. Shinde, S.J. Dhoble, and A. Kumar, J. Rare Earths 29, 527 (2009).

    Article  Google Scholar 

  21. A. Nag and T.G.N. Kutty, J. Mater. Chem. 14, 1598 (2004).

    Article  CAS  Google Scholar 

  22. E.D. Bacce, A.M. Pires, and M.R. Davolos, J. Alloys Compd. 344, 312 (2002).

    Article  CAS  Google Scholar 

  23. R.Y. Yang, M.H. Weng, H.Y. Chen, C.M. Hsiung, and S.H. Chen, J. Luminescence 132, 478 (2012).

    Article  CAS  Google Scholar 

  24. N. Hirosaki, R.J. Xie, K. Kimoto, T. Sekiguchi, Y. Yamamoto, T. Suehiro, and M. Mitomo, Appl. Phys. Lett. 86, 211905 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ru-Yuan Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, RY., Peng, YM. & Su, YK. Novel Red-Emitting Microwave-Assisted-Sintered LiSrPO4: Eu3+ Phosphors for Application in Near-UV White Light-Emitting Diodes. J. Electron. Mater. 42, 2910–2914 (2013). https://doi.org/10.1007/s11664-013-2684-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-013-2684-y

Keywords

Navigation