Skip to main content
Log in

Liquation Cracking in Arc and Friction-Stir Welding of Mg-Zn Alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

As compared to Al alloys, which are known to be susceptible to liquation (i.e., liquid formation) and liquation-induced cracking, most Mg alloys have a lower eutectic temperature and thus are likely to be even more susceptible. The present study was conducted to study liquation and liquation cracking in Mg alloys during arc welding and friction-stir welding (FSW). Binary Mg-Zn alloys were selected as a model material in view of their very low eutectic temperature of 613 K (340 °C). Mg-Zn alloys with 2, 4, and 6 wt pct of Zn were cast and welded in the as-cast condition by both gas-tungsten arc welding (GTAW) and FSW. A simple test for liquation cracking was developed, which avoided interference by solidification cracking in the nearby fusion zone. Liquation and liquation cracking in GTAW were found to be in the decreasing order of Mg-6Zn, Mg-4Zn, and Mg-2Zn. Liquation cracking occurred in FSW of Mg-6Zn but not Mg-4Zn or Mg-2Zn. Instead of a continuous ribbon-like flash connected to the weld edge, small chips, and powder covered the weld surface of Mg-6Zn. The results from GTAW and FSW were discussed in light of the binary Mg-Zn phase diagram and the curves of temperature vs fraction solid during solidification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. H. Watarai: Q. Rev, 2006, vol.18, pp 84-97.

    Google Scholar 

  2. USAMP, United States Automotive Materials Partnership—A Consortium of the United States Council for Automotive Research, MG 2020, released 11, 1, 2006, pp. 1–34.

  3. M.K. Kulekci: Int. J. Adv. Manuf. Tech., 2008, vol. 39, pp. 851–65.

    Article  Google Scholar 

  4. J. Feng, Y. Wang, and Z. Zhang: 2005. Chin. J. Nonferr. Met., 2005, vol. 15, pp. 165–178 (in Chinese).

    Google Scholar 

  5. G.H. Deinzer and M. Rethmeier: in Magnesium TechnologyMetallurgy, Design Data and Applications, H.E. Friedrich and B. L. Mordike, eds., Springer, Secaucus, 2006, pp. 349–63.

  6. X. Cao, M. Jahazi, J.P. Immarigeon, and W. Wallace: J. Mat. Proc. Tech., 2006, vol. 171, pp. 188-204.

    Article  Google Scholar 

  7. Liu, L: Welding and Joining of Magnesium Alloys. Woodhead Publishing, Cambridge, UK, 2012.

    Google Scholar 

  8. K.E. Prasad, B. Li, N. Dixit, M. Shaffer, S.N. Mathaudhu, and K.T. Ramesh: JOM, 2014, vol. 66, pp. 291-304.

    Article  Google Scholar 

  9. S. Kou, Welding Metallurgy, 2nd ed., John Wiley and Sons, Hoboken, NJ, 2003, pp. 301-340.

    Google Scholar 

  10. S. Kou: Weld. J., 2012, vol. 91, pp. 287s-302s.

    Google Scholar 

  11. C. Huang and S. Kou: Weld. J., 2000, vol. 79, pp. 113s-120s.

    Google Scholar 

  12. C. Huang and S. Kou: Weld. J., 2002, vol. 81, pp. 211s-222s.

    Google Scholar 

  13. C. Huang and S. Kou: Weld. J., 2001, vol. 80, pp. 46s-53s.

    Google Scholar 

  14. C. Huang and S. Kou, Weld. J., 2001, vol. 80, pp. 9s-17s.

    Google Scholar 

  15. C. Huang and S. Kou: Weld. J., 2004, vol. 83, pp. 50s-58s.

    Google Scholar 

  16. C. Huang and S. Kou: Weld. J., 2004, vol. 83, pp. 111s-122s.

    Google Scholar 

  17. S. Kou, V. Firouzdor, and I. Haygood: in Hot Cracking Phenomena in Welds III, J.C. Lippold, Th. Böllinghaus, and C.E. Cross, eds., Springer, Berlin, 2011, pp. 3–23.

  18. G. Cao and S. Kou: Weld. J., 2006, vol. 85, pp. 9s-18s.

    Google Scholar 

  19. A. Munitz, C. Cotler, A. Stern, and G. Kohn: Mater. Sci. Eng. A, 2001, vol. 302, pp. 68-73.

    Article  Google Scholar 

  20. T. Zhu, Z.W. Chen and W. Gao: Mater. Sci. Eng. A, 2006, vol. 416, pp. 246-52.

    Article  Google Scholar 

  21. T. Zhu, Z.W. Chen and W. Gao: Mater. Charact., 2008, vol.59, pp.1550-58.

    Article  Google Scholar 

  22. W. Zhou, T.Z. Long and C.K. Mark: Mater. Sci. Tech., 2007, vol. 23, pp. 1294-99.

    Article  Google Scholar 

  23. D.X. Sun, D.Q. Sun, X.Y. Gui and Z.Z. Xuan: ISIJ Int., 2009, vol. 49, pp. 270-74.

    Article  Google Scholar 

  24. W.M. Thomas, E.D. Nicholas, J.C. Needham, M.G. Murch, P. Temple-Smith, and C.J. Dawes: International Patent Application No. PCT/GB92, Patent Application No. 9125978.8, December 6, 1991.

  25. S. Song, S. Lee, B. Kim, T. Yoon, N. Kim, I. Kim and C. Kang. Mater. Trans., 2011, vol. 52, pp. 254-57.

    Article  Google Scholar 

  26. J. Yan, M.A. Sutton, and A.P. Reynolds: 5th Int. FSW Sympos., Metz, France, 14–16 September, 2004.

  27. A.P. Gerlich and T. Shibayanagi: Sci. Technol. Weld. Join., 2011, vol.16, pp. 295-99.

    Article  Google Scholar 

  28. V. Firouzdor and S. Kou: Metall. Mater. Trans. A, 2010, vol. 41, pp. 2914-2935.

    Article  Google Scholar 

  29. V. Firouzdor and S. Kou: Metall. Mater. Trans. A, 2010, vol. 41, pp. 3238-3251.

    Article  Google Scholar 

  30. V. Firouzdor and S. Kou: Weld. J., 2009, vol. 88, pp. 213s-224s.

    Google Scholar 

  31. A. Gerlich, M. Yamamoto and T.H. North: Sci. Technol. Weld. Join., 2007, vol. 12, pp. 472-80.

    Article  Google Scholar 

  32. A. Gerlich, P. Su and T.H. North: Sci. Technol. Weld. Join., 2005, vol.10, pp. 647-52.

    Article  Google Scholar 

  33. M. Yamamoto, A. Gerlich, T.H. North and K. Shinozaki: Sci. Technol. Weld. Join., 2007, vol. 12, pp. 208-16.

    Article  Google Scholar 

  34. M. Yamamoto, A. Gerlich, T.H. North and K. Shinozaki: J. Mater. Sci., 2007, vol. 42, pp. 7657-66.

    Article  Google Scholar 

  35. Y.K. Yang, H. Dong, H. Cao, Y.A. Chang and S. Kou: Weld. J., 2008, vol. 87, pp. 167s-177s.

    Google Scholar 

  36. X. Gao and J.F. Nie: Scr. Mater., 2007, vol. 57, pp. 655-58.

    Article  Google Scholar 

  37. J. Buha: Mater. Sci. Eng. A, 2008, vol. 492, pp. 11-19.

    Article  Google Scholar 

  38. X. Gao and J.F. Nie: Scr. Mater., 2007, vol. 56, pp. 645-48.

    Article  Google Scholar 

  39. H. Somekawa, A. Sigh and T. Mukai Scr. Mater., 2006, vol. 55, pp. 593-96.

    Article  Google Scholar 

  40. H. Somekawa, A. Sigh and T. Mukai: Scr. Mater., 2009, vol. 60, pp. 411-14.

    Article  Google Scholar 

  41. D.Y. Maeng,, T.S. Kim, J.H. Lee, S.J. Hong, S.K. Seo, and B.S. Chun: Scr. Mater., 2000, vol. 43, pp. 358-89.

    Article  Google Scholar 

  42. L.Y. Wei, G.L. Dunlop, and H. Westengen: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 1947-55.

    Article  Google Scholar 

  43. M. De Cicco, H. Konishi, G. Gao, H.S. Choi, L.S. Turng, J.H. Perepezko, S. Kou, R. Lakes, and X. Li: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 3038-45.

    Article  Google Scholar 

  44. S. Zhang, X. Zhang, C. Zhao, J. Li, Y. Song, C. Xie, H. Tao, Y. Zhang, Y. He, Y. Jiang, and Y. Bian: Acta Biomater., 2010, vol. 6, pp. 626-40.

    Article  Google Scholar 

  45. Z.H. Yu, H.G. Yan, J.H. Chen, and Y.Z. Wu: J. Mater. Sci., 2010, vol. 45, pp. 3797-3803.

    Article  Google Scholar 

  46. G.M. Xie, Z.Y. Ma and L. Geng: Mater. Sci. Eng. A, 2008, vol. 486, pp. 49–55.

    Article  Google Scholar 

  47. G. Cao and S. Kou: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 3647-63.

    Article  Google Scholar 

  48. T.B. Massalski, ed.: Binary Alloy Phase Diagrams, American Society for Metals, Metals Park, OH, 1986, p. 1565.

  49. J.B. Clark, L. Abdyr, and Z. Moser: Mg-Zn (Magnesium-Zinc) Binary Alloy Phase Diagrams, T.B. Massalski, ed., 2nd ed., vol. 3, 1990, pp. 2571–72.

  50. G. Cao and S. Kou: Weld. J., 2005, vol. 84, pp. 63s-71s.

    Google Scholar 

  51. Pandat: Phase Diagram Calculation Software Package for Multicomponent Systems, Computherm LLC, Madison, WI, 2001.

  52. PanMagnesium: Thermodynamic Database for Magnesium Alloys, Computherm LLC, Madison, WI, 2001.

  53. W. Yuan, R.S. Mishra, B. Carlson, R. Verma and R.K. Mishra, Mater. Sci. Eng. A, 2012, vol. 543, pp. 200-209.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation under Grant No. IIP-1034695 and the University of Wisconsin Foundation through the Industry/University Collaborative Research Center (I/UCRC) for Integrated Materials Joining Science for Energy Applications. The authors would like to thank CompuTherm, LLC in Madison, WI and Professor Rainer Schmid-Fetzer, Clausthal University of Technology at Clausthal-Zellerfeld, Germany for the software package Pandat and the database PanMg. The authors would like to thank Mr. Tom Kurilich of US Magnesium LLC in Salt Lake City, Utah for donating 45 kg (100 lbs) of pure Mg ingots. They would also like to thank the late John F. Hinrichs of Friction Stir Link, Inc., Menomonee Falls, WI for suggesting the topic for study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sindo Kou.

Additional information

Manuscript submitted April 7, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wagner, D.C., Chai, X., Tang, X. et al. Liquation Cracking in Arc and Friction-Stir Welding of Mg-Zn Alloys. Metall Mater Trans A 46, 315–327 (2015). https://doi.org/10.1007/s11661-014-2606-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2606-5

Keywords

Navigation