Skip to main content
Log in

Strong, Ductile Magnesium-Zinc Nanocomposites

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Incorporated SiC nanoparticles are demonstrated to influence the solidification of magnesium-zinc alloys resulting in strong, ductile, and castable materials. By ultrasonically dispersing a small amount (less than 2 vol pct) of SiC nanoparticles, both the strength and ductility exhibit marked enhancement in the final casting. This unusual ductility enhancement is the result of the nanoparticles altering the selection of intermetallic phases. Using transmission electron microscopy (TEM), the MgZn2 phase was discovered among SiC nanoparticle clusters in hypoeutectic compositions. Differential thermal analysis showed that the MgZn2 formation resulted in elimination of other intermetallics in the Mg-4Zn nanocomposite and reduced their formation in Mg-6Zn and Mg-8Zn nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. PHILIP is a trademark of FEI Company, Hillsboro, OR.

References

  1. X.C. Tong and H.S. Fang: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 893–902.

    Article  CAS  ADS  Google Scholar 

  2. Y.T. Zhao, S.L. Zhang, G. Chen, X.N. Cheng, and C.Q. Wang: Compos. Sci. Technol., 2008, vol. 68, pp. 1463–70.

    Article  CAS  Google Scholar 

  3. S.F. Hassan and M. Gupta: Mater. Sci. Technol., 2004, vol. 20, pp. 1383–88.

    Article  CAS  Google Scholar 

  4. S.F. Hassan and M. Gupta: J. Compos. Mater., 2007, vol. 41, pp. 2533–43.

    Article  CAS  Google Scholar 

  5. R.M. Heavenrich: EPA420-R-06-011, Office of Transportation and Air Quality, U.S. Environmental Protection Agency, Washington, DC, 2006, pp. 1–80.

  6. A.F. Zimmerman, G. Palumbo, K.T. Aust, and U. Erb: Mater. Sci. Eng., A, 2002, vol. 328, pp. 137–46.

    Article  Google Scholar 

  7. M.J. Tan and X. Zhang: Mater. Sci. Eng., A, 1998, vol. 244, pp. 80–85.

    Article  Google Scholar 

  8. H. Ferkel and B.L. Mordike: Mater. Sci. Eng., A, 2001, vol. 298, pp. 193–99.

    Article  Google Scholar 

  9. D.Y. Ying and D.L. Zhang: Mater. Sci. Eng., A, 2000, vol. 286, pp. 152–56.

    Article  Google Scholar 

  10. Y.S. Kwon, D.V. Dudina, M.A. Korchagin, and O.I. Lomovsky: J. Mater. Sci., 2004, vol. 39, pp. 5325–31.

    Article  CAS  ADS  Google Scholar 

  11. J. Lan, Y. Yang, and X. Li: Mater. Sci. Eng., A, 2004, vol. 386, pp. 284–90.

    Google Scholar 

  12. Y. Yang, J. Lan, and X. Li: Mater. Sci. Eng., A, 2004, vol. 380, pp. 378–83.

    Article  Google Scholar 

  13. Y. Yang and X. Li: J. Manuf. Sci. Eng. Trans. ASME, 2007, vol. 129, pp. 252–55.

    Article  Google Scholar 

  14. K.S. Suslick and G.J. Price: Annu. Rev. Mater. Sci., 1999, vol. 29, pp. 295–326.

    Article  CAS  Google Scholar 

  15. G. Cao, H. Konishi, and X. Li: J. Manuf. Sci. Eng. Trans. ASME, 2008, vol. 130, pp. 031105.1–031105.6.

    Google Scholar 

  16. A. Luo: Can. Metall. Q., 1996, vol. 35, pp. 375–83.

    Article  CAS  Google Scholar 

  17. M. De Cicco, L.S. Turng, X. Li, and J.H. Perepezko: Solid State Phenomena, 2008, vols. 141–143, pp. 487–92.

    Article  Google Scholar 

  18. G. Cao, J. Kobliska, H. Konishi, and X. Li: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 880–86.

    Article  CAS  ADS  Google Scholar 

  19. Z. Zhang and D.L. Chen: Mater. Sci. Eng., A, 2008, vols. 483–484, pp. 148–52.

    Google Scholar 

  20. Z. Zhang and D.L. Chen: Scripta Mater., 2006, vol. 54, pp. 1321–26.

    Article  CAS  Google Scholar 

  21. C.S. Goh, J. Wei, L.C. Lee, and M. Gupta: Acta Mater., 2007, vol. 55, pp. 5115–21.

    Article  CAS  Google Scholar 

  22. L.H. Dai, Z. Ling, and Y.L. Bai: Compos. Sci. Technol., 2001, vol. 61, pp. 1057–63.

    Article  CAS  Google Scholar 

  23. ASM Handbook, vol. 2, Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, Properties of Magnesium Alloys, Cast Magnesium Alloys, ASM INTERNATIONAL, Materials Park, OH, 1992, http://products.asminternational.org/hbk/index.jsp.

  24. CoorsTek Inc. website, http://www.coorstek.com/materials/ceramics/carbides/puresichr.asp, 2009.

  25. J. Lin, Q. Wang, L. Peng, Y. Zhou, and W. Ding: Mater. Sci. Forum, 2007, vols. 546–549, pp. 319–22.

    Article  Google Scholar 

  26. M. De Cicco, L. Turng, X. Li, and J.H. Perepezko: Solid State Phenomena, 2006, vols. 116–117, pp. 478–83.

    Article  Google Scholar 

  27. ASM Handbook, vol. 21, Composites, Introduction to Composites, ASM INTERNATIONAL, Materials Park, OH, 1992, http://products.asminternational.org/hbk/index.jsp.

  28. Y. Yang and X. Li: J. Manuf. Sci. Eng. Trans. ASME, 2007, vol. 129, pp. 497–501.

    Article  Google Scholar 

  29. X. Gao and J.F. Nie: Scripta Mater., 2007, vol. 57, pp. 655–58.

    Article  CAS  Google Scholar 

  30. X. Gao and J.F. Nie: Scripta Mater., 2007, vol. 56, pp. 645–48.

    Article  CAS  Google Scholar 

  31. J.B. Clark, L. Zabdyr, and Z. Moser: in Phase Diagrams of Binary Magnesium Alloys, A.A. Nayeb-Hashemi and J.B. Clark, eds., ASM INTERNATIONAL, Metals Park, OH, 1988, pp. 353–64.

    Google Scholar 

  32. J. Miettinen: CALPHAD, 2008, vol. 32, pp. 389–98.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaochun Li.

Additional information

Manuscript submitted November 16, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Cicco, M., Konishi, H., Cao, G. et al. Strong, Ductile Magnesium-Zinc Nanocomposites. Metall Mater Trans A 40, 3038–3045 (2009). https://doi.org/10.1007/s11661-009-0013-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-009-0013-0

Keywords

Navigation