Skip to main content

Advertisement

Log in

Potential and Limitations of Plant Virus Epidemiology: Lessons from the Potato virus Y Pathosystem

  • Published:
Potato Research Aims and scope Submit manuscript

Abstract

Plant virus epidemiology provides powerful tools to investigate key factors that contribute to virus epidemics in agricultural crops. When successful, epidemiological approaches help to guide decisions regarding plant protection strategies. A recent example is epidemiological research on Potato virus Y (PVY) in Finnish seed potato production; this study led to the identification of the main PVY vector species and helped to determine the timing of virus transmission. However, pathosystems rarely allow research to produce such clear-cut results. In fact, the notorious complexity of plant virus pathosystems, with multiple interactions between virus, vector, plant and environment, makes them often impenetrable even for advanced epidemiological models. This dynamic complexity questions the universal validity of employing epidemiological models that attempt to single out key factors in plant virus epidemics. Therefore, a complementary approach is needed that acknowledges the partly indeterministic nature of complex and evolving pathosystems. Such an approach is the use of diversity, employing functionally complementary elements that can jointly buffer against environmental changes. I argue that for a wider range of plant production problems, the strategy of combining mechanistic and diversity-based approaches will provide potent and sustainable solutions. In addition, to translate insights from plant virus epidemiology into practice, improvements need to be made in knowledge transfer, both within the scientific community and between researchers and practitioners. Finally, moving towards more appropriate virus control strategies is only possible if economic interests of stakeholders are in line with changing current practices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Beemster ABR, De Bokx JA (1987) Survey of properties and symptoms. In: De Bokx JA, van der Want JPH (eds) Viruses of potatoes and seed-potato production. Pudoc, Wageningen, pp 84–115

    Google Scholar 

  • Boiteau G, Singh M, Lavoie J (2009) Crop border and mineral oil sprays used in combination as physical control methods of the aphid-transmitted potato virus Y in potato. Pest Manag Sci 65:255–259

    Article  PubMed  CAS  Google Scholar 

  • Bos L (1999) Plant viruses, unique and intriguing pathogens. Backhuys, Leiden

    Google Scholar 

  • Boukhris-Bouhachem S, Djilani-Khouadja F, Fakhfakh H, Glais L, Tribodet M, Kerlan C (2010) Incidence and characterization of Potato virus Y in seed potatoes in Tunisia. Pot Res 53:151–166

    Article  Google Scholar 

  • Boydston RA, Mojtahedi H, Crosslin JM, Brown CR, Anderson T (2008) Effect of hairy nightshade (Solanum sarrachoides) presence on potato nematodes, diseases, and insect pests. Weed Sci 56:151–154

    Article  CAS  Google Scholar 

  • Bradley RHE (1954) Studies of the mechanism of transmission of potato virus Y by the green peach aphid, Myzus persicae (Sulz.) (Homoptera: Aphididae). Can J Zool 32:64–73

    Article  Google Scholar 

  • Crosslin JM, Hamm PB, Hane DC, Jaeger J, Brown CR, Shiel PJ, Berger PH, Thornton RE (2006) The occurrence of PVYO, PVYN, and PVYN:O strains of potato virus Y in certified potato seed lot trials in Washington and Oregon. Plant Dis 90:1102–1105

    Article  Google Scholar 

  • Döring TF, Chittka L (2007) Visual ecology of aphids—a critical review on the role of colours in host finding. Arthrop Plant Interact 1:3–16

    Article  Google Scholar 

  • Döring TF, Kirchner SM, Kühne S, Saucke H (2004) Response of alate aphids to green targets on coloured backgrounds. Ent Exp Appl 113:53–62

    Article  Google Scholar 

  • Döring TF, Schrader J, Schüler C (2006) Representation of Potato virus Y control strategies in current and past extension literature. Potato Res 49:225–239

    Article  Google Scholar 

  • Döring TF, Zhang J, Jones HE, Wolfe MS (2010) Breeding for resilience in wheat—nature’s choice. In: Breeding for resilience: a strategy for organic and low-input farming sytems? Eucarpia 2nd Conference of the Organic and Low-Input Agriculture Section, Paris, France.

  • Döring TF, Knapp S, Kovacs G, Murphy K, Wolfe MS (2011) Evolutionary plant breeding in cereals—into a new era. Sustainability 3(10):1944–1971

    Article  Google Scholar 

  • Finckh MR, Wolfe MS (1997) The use of biodiversity to restrict plant diseases and some consequences for farmers and society. In: Jackson LE (ed) Ecology in agriculture. Academic, San Diego, pp 203–237

    Chapter  Google Scholar 

  • Fuglie KO (2007) Priorities for potato research in developing countries: results of a survey. Am J Potato Res 84:353–365

    Article  Google Scholar 

  • Garcia-Arenal F, Fraile A, Malpica JM (2003) Variation and evolution of plant virus populations. Int Microbiol 6:225–232

    Article  PubMed  Google Scholar 

  • Goodwin P, Wright G (2009) The limits of forecasting methods in anticipating rare events. Technol Forecast Soc Change 77:355–368

    Article  Google Scholar 

  • Harrington R, Gibson RW (1989) Transmission of potato virus Y by aphids trapped in potato crops in southern England. Potato Res 32:167–174

    Article  Google Scholar 

  • Heimbach U, Thieme T, Weidemann HL, Thieme R (1998) Transmission of potato virus Y by aphid species which do not colonise potatoes. In: Dixon AFG (ed) Aphids in natural and managed ecosystems. Universidad de León, León, pp 555–559

    Google Scholar 

  • Heimbach U, Eggers C, Thieme T (2000) Wirkung von Strohmulch auf Blattläuse und Virusbefall in Raps und Kartoffeln. Mitt Biol Bundesanst Land Forstw 376:198

    Google Scholar 

  • Hiltunen L, Virtanen E, Kirchner S, Valkonen J (2008) Y-virus-hankkeella hallintaan. Kuuma Peruna 1/2008:20

    Google Scholar 

  • Holt JK, Jeger MJ, Thresh JM, Otim-Nape GW (1997) An epidemiological model incorporating vector population dynamics applied to African cassava mosaic virus disease. J Appl Ecol 34:793–806

    Article  Google Scholar 

  • Hu X, He C, Xiao Y, Xiong X, Nie X (2009) Molecular characterization and detection of recombinant isolates of potato virus Y from China. Arch Virol 154:1303–1312

    Article  PubMed  CAS  Google Scholar 

  • Jeger MJ, Holt J, Van Den Bosch F, Madden LV (2004) Epidemiology of insect-transmitted plant viruses: modelling disease dynamics and control interventions. Physiol Ent 29:291–304

    Article  Google Scholar 

  • Jones RAC (2009) Plant virus emergence and evolution: Origins, new encounter scenarios, factors driving emergence, effects of changing world conditions, and prospects for control. Virus Res 141:113–130

    Article  PubMed  CAS  Google Scholar 

  • Jones RAC, Salam MU, Maling TJ, Diggle AJ, Thackray DJ (2010) Principles of predicting plant virus disease epidemics. Annu Rev Phytopath 48:179–203

    Article  CAS  Google Scholar 

  • Kirchner SM, Hiltunen L, Virtanen E, Valkonen JPT (2010) Phenology of aphids and their potential as virus vectors in a northern seed potato production area in Finland—Poster # Ep1 Plant Viruses: Exploiting Agricultural and Natural Ecosystems. In: 11th International Plant Virus Epidemiology Symposium and 3rd Workshop of the Plant Virus Ecology Network, Cornell University, Ithaca, New York.

  • Kirchner SM, Döring TF, Hiltunen LH, Virtanen E, Valkonen JPT (2011a) Information theory-based model selection for determining the main vector and period of transmission of Potato virus Y. Ann Appl Biol 159(3):414–427

    Article  Google Scholar 

  • Kirchner SM, Hiltunen LH, Ketola J, Kankaala A, Virtanen E, Döring TF, JV (2011b) Efficacy of straw mulch, insecticides, mineral oil, and birch extract in controlling Potato virus Y in Finnish seed potato production. In: 18th Triennial Conference of the European Association for Potato Research, Oulu, Finland, Santala, J and Valkonen, JPT (eds), pp. 156

  • Kranz J (1996) Epidemiologie der Pflanzenkrankheiten. Ulmer, Stuttgart

    Google Scholar 

  • Leslie TW, Van Der Werf W, Bianchi FJJA, Honěk A (2009) Population dynamics of cereal aphids: influence of a shared predator and weather. Agric Forest Entomol 11:73–82

    Article  Google Scholar 

  • Makridakis S, Taleb NN (2009) Decision making and planning under low levels of predictability. Int J Forecast 25:716–733

    Article  Google Scholar 

  • Martin DP, Shepherd DN (2009) The epidemiology, economic impact and control of maize streak disease. Food Secur 1:305–315

    Article  Google Scholar 

  • Michelmore RW (2003) The impact zone: genomics and breeding for durable disease resistance. Curr Opin Plant Biol 6:397–404

    Article  PubMed  Google Scholar 

  • Nemecek T (1993) The role of aphid behaviour in the epidemiology of potato virus YN (PVYN). ETH Zürich, Zürich

    Google Scholar 

  • Parnas DL (2007) Stop the numbers game. Commun ACM 50:19–21

    Article  Google Scholar 

  • Perring TM, Gruenhagen NM, Farrar CA (1999) Management of plant viral diseases through chemical control of insect vectors. Annu Rev Ent 44:457–481

    Article  CAS  Google Scholar 

  • Radcliffe EB, Ragsdale DW (2002) Aphid-transmitted potato viruses: the importance of understanding vector biology. Am J Potato Res 79:353–386

    Article  Google Scholar 

  • Rongai D, Cerato C, Martelli R, Ghedini R (1998) Aspects of insecticide resistance and reproductive biology of Aphis gossypii Glover on seed potatoes. Potato Res 41:29–37

    Article  Google Scholar 

  • Saucke H, Döring TF (2004) Potato Virus Y reduction by straw mulch in organic potatoes. Ann Appl Biol 144:347–355

    Article  Google Scholar 

  • Saucke H, Juergens M, Döring TF, Lesemann DE, Fittje S, Vetten HJ (2009) Effect of sowing date and straw mulch on virus incidence and aphid infestation in organically grown faba beans (Vicia faba). Ann Appl Biol 154(2):239–250

    Article  Google Scholar 

  • Schär C, Vidale PL, Lüthi D, Frei C, Häberli C, Liniger MA, Appenzeller C (2004) The role of increasing temperature variability in European summer heatwaves. Nature 427:332–336

    Article  PubMed  Google Scholar 

  • Sigvald R (1984) The relative efficiency of some aphid species as vectors of potato virus Yo (PVYo). Potato Res 27:285–290

    Article  Google Scholar 

  • Sigvald R (1985) Mature-plant resistance of potato plants against potato virus YO (PVYO). Potato Res 28:135–143

    Article  Google Scholar 

  • Sigvald R (1992) Progress in aphid forecasting systems. Neth J Plant Path 98:55–62

    Article  Google Scholar 

  • Stevenson WR (2001) Compendium of potato diseases. APS Press, St. Paul

    Google Scholar 

  • Sztuba-Solinska J, Urbanowicz A, Figlerowicz M, Bujarski JJ (2011) RNA–RNA recombination in plant virus replication and evolution. Annu Rev Phytopath 49:415–443

    Article  CAS  Google Scholar 

  • Taleb NN (2007) Black swans and the domains of statistics. Am Stat 61:1–3

    Article  Google Scholar 

  • Thackray DJ, Diggle AJ, Berlandier FA, Jones RAC (2004) Forecasting aphid outbreaks and epidemics of cucumber mosaic virus in lupin crops in a Mediterranean-type environment. Virus Res 100:67–82

    Article  PubMed  CAS  Google Scholar 

  • Tugume AK, Mukasa SB, Valkonen JPT (2008) Natural wild hosts of sweet potato feathery mottle virus show spatial differences in virus incidence and virus-like diseases in Uganda. Phytopathology 98:640–652

    Article  PubMed  CAS  Google Scholar 

  • Valkonen JPT (2007) Viruses: economical losses and biotechnological potential. In: Vreugdenhil D et al. (eds) Potato biology and biotechnology. Advances and perspectives. Elsevier, New York, pp 619–641

    Chapter  Google Scholar 

  • Waterworth HE, Hadidi A (1998) Economic losses due to plant viruses. In: Hadidi A, Khetarpal RK, Koganezawa H (eds) Plant virus disease control. APS Press, St. Paul, pp 1–13

    Google Scholar 

  • Way MJ (1967) The nature and causes of annual fluctuations in numbers of Aphis fabae Scop. on field beans (Vicia faba). Ann Appl Biol 59:175–188

    Article  Google Scholar 

  • Weidemann HL (1988) Importance and control of potato virus YN (PVYN) in seed potato production. Potato Res 31:85–94

    Article  Google Scholar 

  • Wetzel M, Franken B (1975) Vorstufenerzeugung in Gesundlagen des Küstenraumes von Weser-Ems. Kartoffelbau 26:154

    Google Scholar 

  • Whitworth JL, Nolte P, McIntosh C, Davidson R (2006) Effect of Potato virus Y on yield of three potato cultivars grown under different nitrogen levels. Plant Dis 90:73–76

    Article  Google Scholar 

  • Winiger FA, Bérces S (1974) Über einige Zusammenhänge zwischen Virusbefall und Ertrag bei Kartoffelsorten des schweizerischen Richtsortimentes. Schweiz Landw Forsch 13:269–285

    Google Scholar 

  • Zellner M (1998) Erfahrungen mit Insektiziden und anderen chemischen Präparaten zur Reduzierung der PVY-Infektion an Kartoffeln. Mitt Biol Bundesanst Land Forstw 357:101

    Google Scholar 

  • Zitter TA, Simons JN (1980) Management of viruses by alteration of vector efficiency and by cultural practices. Annu Rev Phytopath 18:289–310

    Article  Google Scholar 

Download references

Acknowledgements

I would like to thank Sascha Kirchner, Jari Valkonen and Lea Hiltunen for their support and input into the study of Potato virus Y in Finland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas F. Döring.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Döring, T.F. Potential and Limitations of Plant Virus Epidemiology: Lessons from the Potato virus Y Pathosystem. Potato Res. 54, 341–354 (2011). https://doi.org/10.1007/s11540-011-9195-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11540-011-9195-0

Keywords

Navigation