Skip to main content
Log in

Reovirus and other oncolytic viruses for the targeted treatment of cancer

  • Review
  • Published:
Targeted Oncology Aims and scope Submit manuscript

Abstract

In the last 50 years, there have been a number of anecdotal reports of viral infections causing transient cancer remissions in patients with advanced disease. However, during the last decade, these reports have been supplemented by data indicating the potential antitumor effect of a number of viruses. As a consequence, there has been increasing interest in the development of oncolytic viruses—viruses that selectively destroy cancer cells—as cancer therapeutics. They can be divided into two groups: natural tumor-selective wild-type viruses and genetically engineered tumor-selective viruses; both present advantages and disadvantages. The use of oncolytic viruses as anticancer agents still represents a major challenge and many obstacles need to be overcome: issues of systemic toxicity, tumor selectivity, immune response, and manufacture are added to the inconvenience of genetic manipulation. Reovirus is an inherently selective wild-type virus that seems to fulfill many of the above criteria for an oncolytic virus. Reovirus selectively replicates in Ras-activated cells and has been shown to possess antitumor activity both in vitro and in vivo. Since many tumors have an activated Ras pathway, the potential for using reovirus as an effective anticancer agent is substantial. Ongoing studies have demonstrated its safety when administered to cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bluming AZ, Ziegler JL (1971) Regression of Burkitt’s lymphoma in association with measles infection. Lancet 2:105–106

    PubMed  CAS  Google Scholar 

  2. Huebner RJ, Rowe WP, Schatten WE et al (1956) Studies on the use of viruses in the treatment of carcinoma of the cervix. Cancer 9:1211–1218

    PubMed  CAS  Google Scholar 

  3. Heicappell R, Schirrmarker V, von Hoegen P et al (1986) Prevention of metastatic spread by postoperative immunotherapy with virally modified autologous tumor cells. Parameters for optimal therapeutic effects. Int J Cancer 37:569–577

    PubMed  CAS  Google Scholar 

  4. Martuza RL, Malick A, Markert JM et al (1991) Experimental therapy of human glioma by means of a genetically engineered virus mutant. Science 252(5007):854–856

    PubMed  CAS  Google Scholar 

  5. Todo T, Rabkin SD, Sundaresan P et al (1999) Systemic antitumor immunity in experimental brain tumor therapy using a multimutated, replication-competent herpes simplex virus. Hum Gene Ther 10:2741–2755

    PubMed  CAS  Google Scholar 

  6. Shaughnessy E, Lu D, Chatterjee S et al (1996) Parvoviral vectors for the gene therapy of cancer. Semin Oncol 23(1):159–171

    PubMed  CAS  Google Scholar 

  7. Tollefson AE, Scaria A, Hermiston TW et al (1996) The adenovirus death protein (E3-11.6K) is required at very late stages of infection for efficient cell lysis and release of adenovirus from infected cells. J Virol 70(4):2296–2306

    PubMed  CAS  Google Scholar 

  8. Shisler J, Duerksen-Hughes P, Hermiston TM et al (1996) Induction of susceptibility to tumor necrosis factor by E1A is dependent on binding to either p300 or p105-Rb and induction of DNA synthesis. J Virol 70(1):68–77

    PubMed  CAS  Google Scholar 

  9. Cook JL, Miura TA, Ikle DN, Lewis AM Jr, Routes JM (2003) E1A oncogene-induced sensitization of human tumor cells to innate immune defenses and chemotherapy-induced apoptosis in vitro and in vivo. Cancer Res 63(12):3435–3443, Jun 15

    PubMed  CAS  Google Scholar 

  10. Bischoff JR, Kirn DH, Williams A et al (1996) An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science 274:373–376

    PubMed  CAS  Google Scholar 

  11. Fueyo J, Gomez-Manzano C, Alemany R et al (2000) A mutant oncolytic adenovirus targeting the Rb pathway produces anti-glioma effect in vivo. Oncogene 19:2–12

    PubMed  CAS  Google Scholar 

  12. Harrington KJ, Linardakis E, Vile RG (2000) Transcriptional control: an essential component of cancer gene therapy strategies? Adv Drug Deliv Rev 44(2–3):167–184

    PubMed  CAS  Google Scholar 

  13. Tyler KL, Fields BN (1991) Reoviruses. In: Chanock RM, Hirsch MS et al (eds) Virology, 2nd edn. Raven, New York

    Google Scholar 

  14. Adams DJ, Spendelove JC, Spendelove RS et al (1982) Aerosol stability of infectious and potentially infectious reovirus particles. Appl Environ Microbiol 44:903–908

    PubMed  CAS  Google Scholar 

  15. Stanley NF (ed) (1974) Comparative diagnosis of viral diseases. Academic, New York

    Google Scholar 

  16. Ridinger DN, Spendelove RS, Barnett BB (1982) Evaluation of cell lines and immunofluorescence and plaque assay procedures for qualifying reovirus in sewage. Appl Environ Microbiol 43:740–746

    PubMed  CAS  Google Scholar 

  17. Tyler KL, Squier MK, Rodgers SE et al (1995) Differences in the capacity of reovirus strains to induce apoptosis are determined by the viral attachment protein sigma 1. J Virol 69(11):6972–6979

    PubMed  CAS  Google Scholar 

  18. Paul RW, Choi AH, Lee PW (1989) The alpha-anomeric form of sialic acid is the minimal receptor determinant recognized by reovirus. Virology 72(1):382–385

    Google Scholar 

  19. Barton E, Forrest JC, Connolly J et al (2001) Junction adhesion molecule is a receptor for reovirus. Cell 104:441–451

    PubMed  CAS  Google Scholar 

  20. Tyler KL, Clarke P, DeBiasi RL et al (2001) Reoviruses and the host cell. Trends Microbiol 9(11):560–564

    PubMed  CAS  Google Scholar 

  21. Hashiro G, Loh PC, Yau CT (1977) The preferential cytotoxicity of reovirus for certain transformed cell lines. Arch Virol 54(4):307–315

    PubMed  CAS  Google Scholar 

  22. Strong JE, Coffey MC, Tang D et al (1998) The molecular basis of viral oncolysis; usurpation of the Ras signalling pathway by reovirus. EMBO J 17:3351–3362

    PubMed  CAS  Google Scholar 

  23. Coffey MC, Strong JE, Forsyth P et al (1998) Reovirus therapy of tumors with activated Ras Pathway. Science 282:1332–1334

    PubMed  CAS  Google Scholar 

  24. Strong JE, Coffey MC, Tang D et al (1998) The molecular basis of viral oncolysis; usurpation of the Ras signaling pathway by reovirus. EMBO J 17:3351–3362

    PubMed  CAS  Google Scholar 

  25. Bos JL (1989) Ras oncogenes in human cancer: a review. Cancer Res 49:4682–4689

    PubMed  CAS  Google Scholar 

  26. Strong JE, Tang D, Lee PWK (1993) Evidence that the epidermal growth factor receptor on host cells confers reovirus infection efficiency. Virology 197(1):405–411

    PubMed  CAS  Google Scholar 

  27. Norman KL, Hirasawa K, Yang AD et al (2004) Reovirus oncolysis: the Ras/RalGEF/p38 pathway dictates host cell permissiveness to reovirus infection. Proc Natl Acad Sci USA 101:11099–11104

    PubMed  CAS  Google Scholar 

  28. Meurs E, Chong K, Galabro J et al (1990) Molecular cloning and characterization of the human double-stranded RNA-activated protein kinase induced by interferon. Cell 2:379–390

    Google Scholar 

  29. Vorbuger SA, Pataer A, Swiher SG et al (2004) Genetically targeted cancer: therapy tumor destruction by PKR activation. Am J Pharmacogenomics 4(3):180–198

    Google Scholar 

  30. Hirasawa K, Nishikawa SG, Norman KL et al (2002) Oncolytic reovirus against ovarian and colon cancer. Cancer Res 62:1671–1696

    Google Scholar 

  31. Hirasawa K, Nishikawa SG, Norman KL et al (2003) Systemic reovirus therapy of metastatic cancer in immune-competent mice. Cancer Res 15;63(2):348–353

    Google Scholar 

  32. Morris DG, Forsyth PA, Paterson AH et al (2002) A phase I clinical trial evaluating intralesional Reolysin (reovirus) in histologically confirmed malignancies. Am Soc Clin Oncol 24a:A92

    Google Scholar 

  33. Vidal L, Twigger K, White CL et al (2006) Phase I trial of intratumoral administration of reovirus type 3 (Reolysin) in combination with radiation in patients with advanced malignancies. Pro Am Assoc Cancer Res 171:3998

    Google Scholar 

  34. Vidal L, Pandha HS, Harrington KJ et al (2005) A phase I study of wild-type reovirus (Reolysin) given intravenously to patients with advanced malignancies. Proc Am Assoc Cancer Res 204:C31

    Google Scholar 

  35. Flanagan AD, Love R, Tesar W (1955) Propagation of Newcastle disease virus in Ehrlich ascites cells in vitro and in vivo. Proc Soc Exp Biol Med 90:82–86

    PubMed  CAS  Google Scholar 

  36. Reichard KW, Lorence RM, Cascino CJ et al (1992) Newcastle disease virus selectively kills human tumor cells. J Surg Res 52:448–453

    PubMed  CAS  Google Scholar 

  37. Stojdl DF, Lichty B, Knowles S et al (2000) Exploiting tumor-specific defects in the interferon pathway with a previously unknown oncolytic virus. Nat Med 6: 821–825

    PubMed  CAS  Google Scholar 

  38. Lorence RM, Reichard KW, Katubig BB et al (1994) Complete regression of human neuroblastoma xenografts in athymic mice after local Newcastle disease virus therapy. J Natl Cancer Inst 86:1228–1233

    PubMed  CAS  Google Scholar 

  39. Roberts MS, Buasen PT, Incao BA et al (2001) PV701, a naturally attenuated strain of Newcastle disease virus, has a broad spectrum of oncolytic activity against human tumor xenografts. Proc Am Assoc Cancer Res 42:2441a

    Google Scholar 

  40. Schirrmacher V, Bai L, Umansky V et al (2000) Newcastle disease virus activates macrophages for anti-tumor activity. Int J Oncol 16:363–373

    PubMed  CAS  Google Scholar 

  41. Termeer CC, Schirrmacher V, Brocher B et al (2000) Newcastle disease virus infection induces B7-1/B7-2-independent T-cell costimulatory activity in melanoma cells. Cancer Gene Ther 7:316–323

    PubMed  CAS  Google Scholar 

  42. Batliwalla FM, Bateman BA, Serrano D et al (1998) A 15-year follow-up of AJCC stage III malignant melanoma patients treated postsurgically with Newcastle disease virus (NDV) oncolysate and determination of alterations in the CD8 T cell repertoire. Mol Med 4:783–794

    PubMed  CAS  Google Scholar 

  43. Pecora AL, Rizvi N, Cohen GI et al (2002) Phase I of intravenous administration of PV701, an oncolytic virus, in patients with advanced solid cancers. J Clin Oncol 9:251–2266

    Google Scholar 

  44. Hotte SJ, Major PP, Hirte HE et al (2003) Phase I study of prolonged intravenous infusion of PV701, an oncolytic virus, in patients with advanced cancer: evidence for single-agent efficacy. Proc Am Soc Clin Oncol 197:A791

    Google Scholar 

  45. Freeman AI, Gomori JM, Linetsky E et al (2004) Phase I/II trial of intravenous OV001 oncolytic virus in resistant glioblastoma multiforme (GBM). Proc Am Soc Clin Oncol 110:A1515

    Google Scholar 

  46. Ono TH, Tanaka K et al (2000) SLAM (CDw150) is a cellular receptor for measles virus. Nature 406:893–897

    PubMed  Google Scholar 

  47. Karp CL, Wysocka M, Wahl LM et al (1996) Mechanism of suppression of cell-mediated immunity by measles virus. Science 273(5272):228–231

    PubMed  CAS  Google Scholar 

  48. Grote D, Russell SJ, Cornu TI et al (2001) Live attenuated MV induces regression of human lymphoma xenografts in immunodeficient mice. Blood 97:3746–3754

    PubMed  CAS  Google Scholar 

  49. Esolen LM, Park SW, Hardwick JM et al (1995 Apoptosis as a cause of death in measles virus-infected cells. J Virol 69(6):3955–3958

    PubMed  CAS  Google Scholar 

  50. Peng KW, Donovan KA, Schneider U et al (2003) Oncolytic measles viruses displaying a single-chain antibody against CD38, a myeloma cell marker. Blood 101(7):2557–2562

    PubMed  CAS  Google Scholar 

  51. Peng KW, Facteau S, Wegman T.(2002) Non-invasive in vivo monitoring of trackable viruses expressing soluble marker peptides. Nat Med 8:527–531

    PubMed  CAS  Google Scholar 

  52. Dingli D, Peng KW, Harvey ME et al (2004) Image-guided radiovirotherapy for multiple myeloma using a recombinant measles virus expressing the thyroidal sodium iodide symporter. Blood 103(5):1641–1646

    PubMed  CAS  Google Scholar 

  53. Phuong LK, Allen C, Peng K-W et al (2003) Use of a vaccine strain of measles virus genetically engineered to produce carcinoembryonic antigen as a novel therapeutic agent against glioblastoma multiforme. Cancer Res 63:2462–2469

    PubMed  CAS  Google Scholar 

  54. Hasegawa K, Pham L, O’Connor MK et al (2006) Dual therapy of ovarian cancer using measles viruses expressing carcinoembryonic antigen and sodium iodide symporter. Clin Cancer Res 12(6):1868–1875

    PubMed  CAS  Google Scholar 

  55. Peng KW, TenEyck CJ, Galanis E et al (2002) Intraperitoneal therapy of ovarian cancer using an engineered measles virus. Cancer Res 62(16):4656–4662

    PubMed  CAS  Google Scholar 

  56. Yew PR et al (1992). Inhibition of p53 transactivation required for transformation by adenovirus early EB1 protein. Nature 357:82–85

    PubMed  CAS  Google Scholar 

  57. Heise C, Ganly I, Kim YT et al (2000) Efficacy of replication-selective adenovirus against ovarian carcinomatosis is dependent on tumor burden, viral replication and p53 status. Gene Ther 7:1925–1929

    PubMed  CAS  Google Scholar 

  58. Heise C et al (1997) Onyx-015, an E1B gene-attenuated adenovirus, causes tumor-specific cytolysis antitumoral efficacy that can be augmented by standard chemotherapeutic agents. Nature Med 3:639–645

    PubMed  CAS  Google Scholar 

  59. Rodriguez R et al (1997) Prostate-attenuated replication-competent adenovirus CN706: a selective cytotoxic for prostate-specific antigen-positive prostate cancer cells. Cancer Res 57:2559–2563

    PubMed  CAS  Google Scholar 

  60. Yu D et al (1999) The addition of adenovirus type 5 region E3 enables virus 787 to eliminate distant prostate tumor xenografts. Cancer Res 59:4200–4203

    PubMed  CAS  Google Scholar 

  61. Kurihara et al (2000) Selectivity of replication-competent adenovirus for human breast carcinoma cells expressing the MUC1 antigen. J Clin Invest 106:763–771

    PubMed  CAS  Google Scholar 

  62. Rauen KA, Sudilovsky D, Le JL et al (2002) Expression of the Coxsackie adenovirus receptor in normal prostate and in primary and metastatic prostate carcinoma: potential relevance to gene therapy. Cancer Res 62:3812–3818

    PubMed  CAS  Google Scholar 

  63. Glasgow JN, Bauerschmitz GJ, Curiel DT et al (2004) Transductional and transcriptional targeting of adenovirus for clinical applications. Curr Gene Ther 4:1–14

    PubMed  CAS  Google Scholar 

  64. Freytag SO, Rogulski KR, Paielli DL et al (1998) A novel three-pronged approach to kill cancer cells selectively: concomitant viral, double suicide gene, and radiotherapy. Hum Gene Ther 9:1323–1333

    PubMed  CAS  Google Scholar 

  65. Kirn D (2001) Oncolytic virotherapy for cancer with the adenovirus dll520 (Onyx-15): results of phase I and II trials. Expert Opin Biol Ther 1:525–538

    PubMed  CAS  Google Scholar 

  66. Ganly I, Kirn D, Eckhardt G et al (2000) A phase I study of Onyx-015, an E1B attenuated adenovirus, administered intratumourally to patients with recurrent head and neck cancer. Clin Cancer Res 6:798–806

    PubMed  CAS  Google Scholar 

  67. Mulvihill S, Warren R, Venook A et al (2001) Safety and feasibility of injection with an E1B-55 kDa gene-deleted, replication-selective adenovirus (ONYX-015) into primary carcinomas of the pancreas: a phase I trial. Gene Ther 8:308–315

    PubMed  CAS  Google Scholar 

  68. Chiocca EA, Abbed KM, Tatter S et al (2004) A phase I open-label, dose-escalation, multi-institutional trial of injection with an E1B-Attenuated adenovirus, ONYX-015, into the peritumoural region of recurrent malignant gliomas, in the adjuvant setting. Mol Ther 10(5):958–966

    PubMed  CAS  Google Scholar 

  69. Vasey PA, Shulman LN, Campos S et al (2002) Phase I trial of intraperitoneal injection of the E1B-55-kd-gene-deleted adenovirus ONYX-015 (dl1520) given on days 1 through 5 every 3 weeks in patients with recurrent/refractory epithelial ovarian cancer. J Clin Oncol 20:1562–1569

    PubMed  CAS  Google Scholar 

  70. Reid T, Galanis E, Abbruzzese J et al (2001) Intra-arterial administration of a replication-selective adenovirus (dl1520) in patients with colorectal carcinoma metastatic to the liver: a phase I trial. Gene Ther 8:1618–1626

    PubMed  CAS  Google Scholar 

  71. Nemunaitis J, Ganly I, Khuri F et al (2001) Selective replication and oncolysis in p53 mutant tumors with ONYX-015, an E1B-55KD gene-deleted adenovirus in pts with refractory head and neck cancer. J Clin Oncol 19:289–298

    PubMed  CAS  Google Scholar 

  72. Lamont JP, Nemunaitis J, Kuhn JA et al (2000) A prospective phase II trial of ONYX-015 adenovirus and chemotherapy in recurrent squamous cell carcinoma of the head and neck (the Baylor experience). Ann Surg Oncol 7:588–592

    PubMed  CAS  Google Scholar 

  73. Baxter LT, Zhu H, Mackensen DG et al (1994) Physiologically based pharmacokinetic model for specific and nonspecific monoclonal antibodies and fragments in normal tissues and human tumor xenografts in nude mice. Cancer Res 54:1517–1528

    PubMed  CAS  Google Scholar 

  74. Hecht JR, Bedford R, Abbruzesse JL et al (2003) A phase I/II trial of intratumoral endoscopic ultrasound injection of ONYX-015 with intravenous gemcitabine in unresectable pancreatic carcinoma. Clin Cancer Res 9:551-561

    Google Scholar 

  75. Galanis E, Okuno SH, Nascimento AG et al (2005) Phase I/II trial of ONYX-015 in combination with MAP chemotherapy in patients with advanced sarcomas. Gene Ther 12:43–45

    Google Scholar 

  76. DeWeese TL, van der Poel H, Li S et al (2001) Phase I trial of CV706, a replication-competent, PSA-selective oncolytic adenovirus, for the treatment of locally recurrent prostate cancer following radiation therapy. Cancer Res 61:7464–7472

    PubMed  CAS  Google Scholar 

  77. Nemunaitis J, Swisher SG, Timmons T et al (2000) Adenovirus-mediated p53 gene transfer in sequence with cisplatin to tumors of patients with non-small cell lung cancer. J Clin Oncol 18(3):609–622

    PubMed  CAS  Google Scholar 

  78. Wilding G, Carducci M, Yu DC et al (2004) A Phase I/II trial of IV CG7870, a replication-selective, PSA targeted oncolytic adenovirus (OAV), for the treatment of hormone-refractory, metastatic prostate cancer. Proc Am Soc Clin Oncol 204:A3036

    Google Scholar 

  79. Freytag SO, Stricker H, Pegg J et al (2003) Phase I study of replication-competent adenovirus-mediated double-suicide gene therapy in combination with conventional-dose three-dimensional conformal radiation therapy for the treatment of newly diagnosed, intermediate- to high-risk prostate cancer. Cancer Res 63:7497–7506

    PubMed  CAS  Google Scholar 

  80. Fields BN, Knipe DM (1991) The family Herpesviridae. In: Chanock RM, Hirsch MS et al (eds) Virology, 2nd edn. Raven, New York

    Google Scholar 

  81. Jia WW, Mcdermott M, Goldie J et al (1994) Selective destruction of gliomas in immunocompetent rats by thymidine kinase-defective herpes simplex virus type 1. J Natl Cancer Inst 86:1209–1215

    PubMed  CAS  Google Scholar 

  82. Whitley RJ, Kern ER et al (1993) Replication, establishment of latency, and induced reactivation of herpes simplex virus gamma 1 34.5 deletion mutants in rodents models. J Clin Invest 91:2387–2343

    Google Scholar 

  83. Cozzi PJ, Malhotra S, McAuliffe P et al (2001) Intravesical oncolytic viral therapy using attenuated, replication-competent herpes simplex viruses G207 and Nv1020 is effective in the treatment of bladder cancer in an orthotopic syngeneic model. FASEB J 15:1306–1308

    PubMed  CAS  Google Scholar 

  84. Mineta T, Rabkin SD et al (1994) Treatment of malignant gliomas using ganciclovir-hypersensitive, ribonucleotide reducatase-deficient herpes simplex virus mutant. Cancer Res 54:3963–3966

    PubMed  CAS  Google Scholar 

  85. Bennet JJ, Delman KA, Burt BM et al (2002) Comparison of safety, delivery, and efficacy of two oncolytic herpes viruses (G207 and NV1020) for peritoneal cancer. Cancer Gene Ther 9:935–945

    Google Scholar 

  86. Aghi M, Chou TC, Suling K et al (1999) Multimodal cancer treatment mediated by a replicating oncolytic virus that delivers the oxazaphosphorine/rat cytochrome P450 2B1 and ganciclovir/herpes simplex virus thymidine kinase gene therapies. Cancer Res 59:3861–3865

    PubMed  CAS  Google Scholar 

  87. Carew JF, Kooby DA, Halterman MW et al (2001) A novel approach to cancer therapy using an oncolytic herpes virus to package amplicons containing cytokine genes. Mol Ther 4:250–256

    PubMed  CAS  Google Scholar 

  88. Chahlavi A, Todo T, Martuza RL et al (1999) Replication-competent herpes simplex virus vector G207 and cisplatin combination therapy for head and neck squamous cell carcinoma. Neoplasia 1:162–169

    PubMed  CAS  Google Scholar 

  89. Markert JM, Medlock MD, Rabkin SD et al (2000) Conditionally replicating herpes simplex virus mutant, G207 for the treatment of malignant glioma: results of a phase I trial. Gene Ther 7:867–874

    PubMed  CAS  Google Scholar 

  90. Rampling R, Cruickshank G, Papanastassiou V et al (2000) Toxicity evaluation of replication-competent herpes simplex virus (ICP 34.5 null mutant 1716) in patients with recurrent malignant glioma. Gene Ther 7:859–866

    PubMed  CAS  Google Scholar 

  91. MacKie RM, Stewart B, Brown SM (2001) Intralesional injection of herpes simplex virus 1716 in metastatic melanoma. Lancet 357:525–526

    PubMed  CAS  Google Scholar 

  92. Fong Y, Kemeny N, Jarnagin W et al (2002) Phase 1 study of a replication-competent herpes simplex oncolytic virus for treatment of hepatic colorectal metastases. Proc Am Soc Clin Oncol Ann Meeting 8a:27

    Google Scholar 

  93. Coffin RS, Hu JC, Davis CJ et al (2005) Results of a phase I/II clinical trial with OncoVEXGM-CSF a second generation oncolytic herpes simplex virus. Proc Am Soc Clin Oncol 216s:3099

    Google Scholar 

  94. Zeh HJ, Bartlett DL (2002) Development of a replication-selective, oncolytic poxvirus for the treatment of human cancers. Cancer Gene Ther 9:1001–1012

    PubMed  CAS  Google Scholar 

  95. Puhlmann M, Brown CK, Gnant M et al (2000) Vaccinia as a vector for tumor-directed gene therapy: biodistribution of a thymidine kinase-deleted mutant. Cancer Gene Ther 7:66–73

    PubMed  CAS  Google Scholar 

  96. Buller RM, Chakrabarti S, Cooper JA et al (1988) Deletion of the vaccinia virus growth factor gene reduces virus virulence. J Virol 62:866–874

    PubMed  CAS  Google Scholar 

  97. Buller RM, Chakrabarti S, Moss B (1988) Cell proliferative response to vaccinia virus is mediated by VGF. Virology 164:182–192

    PubMed  CAS  Google Scholar 

  98. Andrade AA, Silva PN, De Sousa LP et al (2004) The vaccinia virus-stimulated mitogen-activated protein kinase (MAPK) pathway is required for virus multiplication. Biochem J 381:437–446

    PubMed  CAS  Google Scholar 

  99. de Magalhaes JC, Andrade AA, Silva PN et al (2001) A mitogenic signal triggered at an early stage of vaccinia virus infection: implication of MEK/ERK and protein kinase A in virus multiplication. J Biol Chem 276:38353–38360

    PubMed  Google Scholar 

  100. McCart JA, Ward JM, Lee J et al (2001) Systemic cancer therapy with a tumor-selective vaccinia virus mutant lacking thymidine kinase and vaccinia growth factor genes. Cancer Res 61:8751–8757

    PubMed  CAS  Google Scholar 

  101. Guo ZS, Naik A, O’Malley ME et al (2005) The enhanced tumor selectivity of an oncolytic vaccinia lacking the host range and antiapoptosis genes SPI-1 and SPI-2. Cancer Res 65:9991–9998

    PubMed  CAS  Google Scholar 

  102. Hodge JW, Poole DJ, Aarts WM et al (2003) Modified vaccinia virus Ankara recombinants are as potent as vaccinia recombinants in diversified prime and boost vaccine regimens to elicit therapeutic antitumor responses. Cancer Res 63:7942–7949

    PubMed  CAS  Google Scholar 

  103. Moss B (1996) Genetically engineered poxviruses for recombinant gene expression, vaccination, and safety. Proc Natl Acad Sci USA 93:11341–11348

    PubMed  CAS  Google Scholar 

  104. Hu Y, Lee J, McCart JA et al (2001) Yaba-like disease virus: an alternative replicating poxvirus vector for cancer gene therapy. J Virol 75:10300–10308

    PubMed  CAS  Google Scholar 

  105. Mastrangelo MJ et al (1995) A phase I trial of intratumorally administered wild-type VV in patients with recurrent superficial melanoma. Vaccine Res 4:55–69

    Google Scholar 

  106. Gomella LG, Mastrangelo MJ, McCue PA et al (2001) Phase I study of intravesical vaccinia virus as a vector for gene therapy of bladder cancer. J Urol 166:1291–1295

    PubMed  CAS  Google Scholar 

  107. Mastrangelo MJ, Maguire HC Jr, Eisenlohr L et al (1999) Intratumoral recombinant GM-CSF-encoding virus as gene therapy in patients with cutaneous melanoma. Cancer Gene Ther 6:409–422

    PubMed  CAS  Google Scholar 

  108. Mukherjee S, Haenel T, Himbeck R et al (2000) Replication-restricted vaccinia as a cytokine gene therapy vector in cancer: persistent transgene expression despite antibody generation. Cancer Gene Ther 7:663–670

    PubMed  CAS  Google Scholar 

  109. Wallack MK, Sivanandham M, Balch CM et al (1998) Surgical adjuvant active specific immunotherapy for patients with stage III melanoma: the final analysis of data from a phase III, randomized, double-blind, multicenter vaccinia melanoma oncolysate trial. J Am Coll Surg 187(1):69–77; discussion 77–79

    PubMed  CAS  Google Scholar 

  110. Di Nicola M, Carlo-Stella C, Mortarini R et al (2004) Boosting T cell-mediated immunity to tyrosinase by vaccinia virus-transduced, CD34(+)-derived dendritic cell vaccination: a phase I trial in metastatic melanoma. Clin Cancer Res 10:5381–5390

    PubMed  Google Scholar 

  111. Kaufman HL, Cohen S, Cheung K et al (2006) Local delivery of vaccinia virus expressing multiple costimulatory molecules for the treatment of established tumors. Hum Gene Ther 17:239–244

    PubMed  CAS  Google Scholar 

  112. Kaufman HL, Deraffele G, Mitcham J et al (2005) Targeting the local tumor microenvironment with vaccinia virus expressing B7.1 for the treatment of melanoma. J Clin Invest 115:1903–1912

    PubMed  CAS  Google Scholar 

  113. Conry RM, Khazaeli MB, Saleh MN et al (1999) Phase I trial of a recombinant vaccinia virus encoding carcinoembryonic antigen in metastatic adenocarcinoma: comparison of intradermal versus subcutaneous administration. Clin Cancer Res 5:2330–2337

    PubMed  CAS  Google Scholar 

  114. Marshall JL, Hawkins MJ, Tsang KY et al (1999) Phase I study in cancer patients of a replication-defective avipox recombinant vaccine that expresses human carcinoembryonic antigen. J Clin Oncol 17:332–337

    PubMed  CAS  Google Scholar 

  115. Marshall JL, Gulley JL, Arlen PM et al (2005) Phase I study of sequential vaccinations with fowlpox-CEA(6D)-TRICOM alone and sequentially with vaccinia-CEA(6D)-TRICOM, with and without granulocyte-macrophage colony-stimulating factor, in patients with carcinoembryonic antigen-expressing carcinomas. J Clin Oncol 23:720–731

    PubMed  CAS  Google Scholar 

  116. Scholl SM, Balloul JM, Le Goc G et al (2000) Recombinant vaccinia virus encoding human MUC1 and IL2 as immunotherapy in patients with breast cancer. J Immunother 23:570–580

    PubMed  CAS  Google Scholar 

  117. Pantuck AJ, van Ophoven A, Gitlitz BJ et al (2004) Phase I trial of antigen-specific gene therapy using a recombinant vaccinia virus encoding MUC-1 and IL-2 in MUC-1-positive patients with advanced prostate cancer. J Immunother 27:240–253

    PubMed  CAS  Google Scholar 

  118. Sanda MG, Smith DC, Charles LG et al (1999) Recombinant vaccinia-PSA (PROSTVAC) can induce a prostate-specific immune response in androgen-modulated human prostate cancer. Urology 53:260–266

    PubMed  CAS  Google Scholar 

  119. Gulley J, Chen AP, Dahut W et al (2002) Phase I study of a vaccine using recombinant vaccinia virus expressing PSA (rV-PSA) in patients with metastatic androgen-independent prostate cancer. Prostate 53:109–117

    PubMed  CAS  Google Scholar 

  120. Eder JP, Kantoff PW, Roper K et al (2000) A phase I trial of a recombinant vaccinia virus expressing prostate-specific antigen in advanced prostate cancer. Clin Cancer Res 6:1632–1638

    PubMed  CAS  Google Scholar 

  121. Davidson EJ, Boswell CM, Sehr P et al (2003) Immunological and clinical responses in women with vulval intraepithelial neoplasia vaccinated with a vaccinia virus encoding human papillomavirus 16/18 oncoproteins. Cancer Res 63:6032–6041

    PubMed  CAS  Google Scholar 

  122. Davidson EJ, Faulkner R, Seh P et al (2004) Effect of TA-CIN (HPV 16 L2E6E7) booster immunization in vulval intraepithelial neoplasia patients previously vaccinated with TA-HPV (vaccinia virus encoding HPV 16/18 E6E7). Vaccine 22:2722–2729

    PubMed  CAS  Google Scholar 

  123. Iyer M, Sato M, Johnson M et al (2005) Applications of molecular imaging in cancer gene therapy. Curr Gene Ther 5:607–618

    PubMed  CAS  Google Scholar 

  124. Groot-Wassink T, Aboagye EO, Wang Y et al (2004) Quantitative imaging of Na/I symporter transgene expression using positron emission tomography in the living animal. Mol Ther 9:436–442

    PubMed  CAS  Google Scholar 

  125. Groot-Wassink T, Aboagye EO, Glaser M et al (2002) Adenovirus biodistribution and noninvasive imaging of gene expression in vivo by positron emission tomography using human sodium/iodide symporter as reporter gene. Hum Gene Ther 13:1723–1735

    PubMed  CAS  Google Scholar 

  126. Yaghoubi SS, Barrio JR, Namavari M et al (2005) Imaging progress of herpes simplex virus type 1 thymidine kinase suicide gene therapy in living subjects with positron emission tomography. Cancer Gene Ther 12:329–339

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank Dr Alan J. Cann, Department of Biology, University of Leicester for his helpful pictures (http://www-micro.msb.le.ac.uk/index.html).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. S. de Bono.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vidal, L., Yap, T.A., White, C.L. et al. Reovirus and other oncolytic viruses for the targeted treatment of cancer. Targ Oncol 1, 130–150 (2006). https://doi.org/10.1007/s11523-006-0026-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11523-006-0026-1

Keywords

Navigation