Skip to main content
Log in

A possible resolution of tension between Planck and Type Ia supernova observations

  • Article
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

There is an apparent tension between cosmological parameters obtained from Planck cosmic microwave background radiation observations and that derived from the observed magnitude-redshift relation for the type Ia supernova (SNe Ia). Here, we show that the tension can be alleviated, if we first calibrate, with the help of the distance-duality relation, the light-curve fitting parameters in the distance estimation in SNe Ia observations with the angular diameter distance data of the galaxy clusters and then re-estimate the distances for the SNe Ia with the corrected fitting parameters. This was used to explore their cosmological implications in the context of the spatially flat cosmology. We find a higher value for the matter density parameter, Ωm, as compared to that from the original SNLS3, which is in agreement with Planck observations at 68.3% confidence. Therefore, the tension between Planck measurements and SNe Ia observations regarding Ωm can be effectively alleviated without invoking new physics or resorting to extensions for the standard concordance model. Moreover, with the absolute magnitude of a fiducial SNe Ia, M, determined first, we obtained a constraint on the Hubble constant with SNLS3 alone, which is also consistent with Planck.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Planck Collaboration I, Ade P A R, Aghanim N, Armitage-Caplan C, et al. Planck 2013 results. I. Overview of products and scientific results. arXiv: 1303.5062

  2. Planck Collaboration XVI, Ade P A R, Aghanim N, Armitage-Caplan C, et al. Planck 2013 results. XVI. Cosmological parameters. arXiv:1303. 1303.5076

  3. Riess A G, Macri L, Casertano S, et al. A 3% solution: Determination of the Hubble Constant with the Hubble Space Telescope and Wide Field Camera 3. Astrophys J, 2011, 730:119–136

    Article  ADS  Google Scholar 

  4. Freedman W L, Madore B F, Scowcroft V, et al. Carnegie Hubble Program: A multi-infrared calibration of the Hubble Constant. Astrophys J, 2012, 758:24–33

    Article  ADS  Google Scholar 

  5. Conley A, Guy J, Sullivan M, et al. Supernova constraints and systematic uncertainties from the first three years of the Supernova Legacy Survey. Astrophys J Suppl, 2011, 192:1–29

    Article  ADS  Google Scholar 

  6. Percival W J, Reid B A, Eisenstein D J, et al. Baryon acoustic oscillations in the Sloan Digital Sky Survey Data Release 7 galaxy sample. Mon Not R Astron Soc, 2010, 401:2148–2168

    Article  ADS  Google Scholar 

  7. Blake C, Kazin E A, Beutler F, et al. The WiggleZ Dark Energy Survey: mapping the distanceCredshift relation with baryon acoustic oscillations. Mon Not R Astron Soc, 2011, 418:1707–1724

    Article  ADS  Google Scholar 

  8. Marra V, Amendola L, Sawicki I, et al. Cosmic variance and the measurement of the local Hubble parameter. Phys Rev Lett, 2013, 110: 241305

    Article  ADS  Google Scholar 

  9. Zhang S N, Ma Y Z. Direct measurement of evolving dark energy density and super-accelerating expansion of the universe. arXiv:1303.6124v3

  10. Verde L, Protopapas P, Jimenez R. Planck and the local Universe: Quantifying the tension. arXiv: 1306.6766

  11. Xia J Q, Li H, Zhang X. Dark energy constraints after Planck. Phys Rev D 2103, 88:063501

    Article  Google Scholar 

  12. Fleury P, Dupuy H, Uzan J-P. Can all cosmological observations be accurately interpreted with a unique geometry? Phys Rev Lett, 2013, 111:091302

    Article  ADS  Google Scholar 

  13. Gao Q, Gong Y. On the compatibility of different observational data. arXiv: 1308.5627

  14. Marchini A, Salvatelli V. Updated constraints from the Planck experiment on modified gravity. Phys Rev D, 2013, 88:027502

    Article  ADS  Google Scholar 

  15. Salvatelli V, Marchini A, Lopez-Honorez L, et al. New constraints on coupled dark energy from Planck. Phys Rev D, 2013, 88:023531

    Article  ADS  Google Scholar 

  16. Hubble E. A relation between distance and radial velocity among extragalactic nebulae. Proc Nat Acad Sci, 1929, 15:168–173

    Article  ADS  MATH  Google Scholar 

  17. Riess A G, Filippenko A V, Challis P, et al. Observational evidence from supernova for an accelerating universe and a cosmological constant. Astron J, 1998, 116:1009–1038

    Article  ADS  Google Scholar 

  18. Perlmutter S, Aldering G, Goldhaber G, et al. Measurements of Ω and Λ from 42 high-redshift supernovae. Astrophys J, 1999, 517:565–586

    Article  ADS  Google Scholar 

  19. Howell D A. Type Ia Supernovae as stellar endpoints and cosmological tools. Nat Commun, 2011, 2:350

    Article  ADS  Google Scholar 

  20. Wood-Vasey W M, Miknaitis G, Stubbs C W, et al. Observational constraints on the nature of dark energy: First cosmological results from the ESSENCE Supernova Survey. Astrophys J, 2007, 666:694–715

    Article  ADS  Google Scholar 

  21. Hicken M, Wood-Vasey W M, Blondin S, et al. Improved dark energy constraints from 100 new CfA supernova type Ia light curves. Astrophys J, 2009, 700:1097–1140

    Article  ADS  Google Scholar 

  22. Kessler R, Becker A C, Cinabro D, et al. First-year Sloan Digital Sky Survey-II supernova results: Hubble diagram and cosmological parameters. Astrophys J Suppl, 2009, 185:32–84

    Article  ADS  Google Scholar 

  23. Suzuki N, Rubin D, Lidman C, et al. The Hubble Space Telescope Clustser Supernova Survey. V. Improving the dark energy constraints above z > 1 and building an early-type-hosted supernova sample. Astrophys J, 2012, 746:85–108

    Article  ADS  Google Scholar 

  24. Phillips M M. The absolute magnitudes of type Ia supernovae. Astrophys J, 1993, 413:L105–L108

    Article  ADS  Google Scholar 

  25. Riess A G, Press W H, Kirshner R P. Using type Ia supernova light curve shapes to measure the Hubble constant. Astrophys J, 1995, 438:L17–L20

    Article  ADS  Google Scholar 

  26. Perlmutter S, Gabi S, Goldhaberet G, et al. Measurements of the cosmological parameters Ω and Λ from the first seven supernovae at z ≥ 0.35. Astrophys J, 1997, 483:565–581

    Article  ADS  Google Scholar 

  27. Wang L, Goldhaber G, Aldering G, et al. Multicolor light curves of type Ia supernovae on the color-magnitude diagram: A novel step toward more precise distance and extinction estimates. Astrophys J, 2003, 590:944–970

    Article  ADS  Google Scholar 

  28. Wang X, Wang L, Zhou X, et al. A novel color parameter as a luminosity calibrator for type Ia supernovae. Astrophys J, 2005, 620:L87–L90

    Article  ADS  Google Scholar 

  29. Riess A G, Press WH, Kirshner R P. A precise distance indicator: Type Ia supernova multicolor light-curve shapes. Astrophys J, 1996, 473:88–109

    Article  ADS  Google Scholar 

  30. Tripp R. A two-parameter luminosity correction for Type Ia supernovae. Astron Astrophys, 1998, 331:815–820

    ADS  Google Scholar 

  31. Guy J, Astier P, Nobili S, et al. SALT: A spectral adaptive light curve template for type Ia supernovae. Astron Astrophys, 2005, 443: 781–791

    Article  ADS  Google Scholar 

  32. Guy J, Astier P, Baumont S, et al. SALT2: Using distant supernovae to improve the use of type Ia supernovae as distance indicators. Astron Astrophys, 2007, 466:11–21

    Article  ADS  Google Scholar 

  33. Conley A, Sullivan M, Hsiao E Y, et al. SiFTO: An empirical method for fitting SN Ia light curves. Astrophys J, 2008, 681:482–498

    Article  ADS  Google Scholar 

  34. Sunyaev R A, Zel’dovich Ya B. The observations of relic radiation as a test of the nature of X-ray radiation from the clusters of galaxies. Comments Astrophys Space Phys, 1972, 4:173–178

    ADS  Google Scholar 

  35. De Filippis E, Sereno M, Bautz W, et al. Measuring the threedimensional structure of galaxy clusters. I. Application to a sample of 25 clusters. Astrophys J, 2005, 625:108–120

    Article  ADS  Google Scholar 

  36. Etherington I M H. The definition of distance in general relativity. Phil Mag, 1933, 15:761–773

    ADS  Google Scholar 

  37. Etherington I M H. The definition of distance in general relativity. Gen Rel Grav, 2007, 39:1055–1067

    Article  ADS  MATH  MathSciNet  Google Scholar 

  38. Ellis G F R. On the definition of distance in general relativity; Etherington I M H. (Philosophical Magazine ser, 7, 15: 761). Gen Rel Grav, 2007, 39:1047–1052

    Article  ADS  MATH  Google Scholar 

  39. Schneider P, Ehlers J, Falco E E. Gravitational Lenses. New York: Springer, 1999

    Google Scholar 

  40. Komatsu E, Smith K M, Dunkley J, et al. Seven-year Wilkinson Microwave Anisotropy Probe (WMAP*) observations: Cosmological interpretation. Astrophys J Suppl, 2011, 192:18–64

    Article  ADS  Google Scholar 

  41. Cunha J V, Marassi L, Lima J A S. Constraining H0 from Sunyaev-Zel’dovich effect, Galaxy Clusters X-ray data, and Baryon Oscillations. Mon Not R Astron Soc, 2007, 379:L1–L5

    Article  ADS  Google Scholar 

  42. Mantz A, Allen SW, Ebeling H, et al. The observed growth of massive galaxy clusters C II. X-ray scaling relations. Mon Not R Astron Soc, 2010, 406:1773–1795

    ADS  Google Scholar 

  43. Riess A G, Filippenko A V, Li W, et al. The rise time of nearby type Ia supernovae. Astron J, 1999, 118:2675–2688

    Article  ADS  Google Scholar 

  44. Hillebrandt W, Niemeyer J C. Type Ia supernova explosion models. Annu Rev Astron Astrophys, 2000, 38:191–230

    Article  ADS  Google Scholar 

  45. Jha S, Riess A G, Kirshner R. Improved distances to type Ia supernovae with Multicolor Light-Curve Shapes: MLCS2k2. Astrophys J, 2007, 659:122–148

    Article  ADS  Google Scholar 

  46. Haugboelle T, Hannestad S, Thomsenet B, et al. The velocity field of the local universe from measurements of Type Ia supernovae. Astrophys J, 2007, 661:650–659

    Article  ADS  Google Scholar 

  47. Conley A, Carlberg R G, Guy J, et al. Is there evidence for a Hubble bubble? The nature of Type Ia supernova colors and dust in external galaxies. Astrophys J, 2007, 664:L13–L16

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HongWei Yu.

Additional information

Recommended by JING YiPeng (Associate Editor-in-Chief)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Z., Wu, P., Yu, H. et al. A possible resolution of tension between Planck and Type Ia supernova observations. Sci. China Phys. Mech. Astron. 57, 381–386 (2014). https://doi.org/10.1007/s11433-013-5373-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-013-5373-1

Keywords

Navigation