Skip to main content
Log in

A DLM/FD/IB method for simulating cell/cell and cell/particle interaction in microchannels

  • Published:
Chinese Annals of Mathematics, Series B Aims and scope Submit manuscript

Abstract

A spring model is used to simulate the skeleton structure of the red blood cell (RBC) membrane and to study the red blood cell (RBC) rheology in Poiseuille flow with an immersed boundary method. The lateral migration properties of many cells in Poiseuille flow have been investigated. The authors also combine the above methodology with a distributed Lagrange multiplier/fictitious domain method to simulate the interaction of cells and neutrally buoyant particles in a microchannel for studying the margination of particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, J., Swarztrauber, P. and Sweet, R., FISHPAK: A package of Fortran subprograms for the solution of separable elliptic partial differential equations, The National Center for Atmospheric Research, Boulder, Colorado, 1980.

    Google Scholar 

  2. Alexeev, A., Verberg, R. and Balazs, A. C., Modeling the interactions between deformable capsules rolling on a compliant surface, Soft Matter, 2, 2006, 499–509.

    Article  Google Scholar 

  3. Bagchi, P., Mesoscale simulation of blood flow in small vessels, Biophys. J., 92, 2007, 1858–1877.

    Article  Google Scholar 

  4. Bagchi, P., Johnson, P. and Popel, A., Computational fluid dynamic simulation of aggregation of deformable cells in a shear flow, J. Biomech. Eng., 127, 2005, 1070–1080.

    Article  Google Scholar 

  5. Beaucourt, J., Rioual, F., Séon, T., et al., Steady to unsteady dynamics of a vesicle in a flow, Phys. Rev. E, 9, 2004, 011906.

    Article  Google Scholar 

  6. Blackshear, P. Jr, Forstorm, R., Dorman, F. and Voss, G., Effect of flow on cells near walls, Federal Proceedings, 30, 1971, 1600–1609.

    Google Scholar 

  7. Chorin, A. J., Hughes, T. J. R., McCracken, M. F. and Marsden, J. E., Product formulas and numerical algorithms, Comm. Pure Appl. Math., 31, 1978, 205–256.

    Article  MATH  MathSciNet  Google Scholar 

  8. Cristini, V. and Kassab, G. S., Computer modeling of red blood cell rheology in the microcirculation: a brief overview, Ann. Biomed. Eng., 33, 2005, 1724–1727.

    Article  Google Scholar 

  9. Crowl, L. M. and Fogelson, A. L., Computational model of whole blood exhibiting lateral platelet motion induced by red blood cells, Int. J. Numer. Meth. Biomed. Engng., 26, 2009, 471–487.

    Article  MathSciNet  Google Scholar 

  10. Dean, E. J. and Glowinski, R., A wave equation approach to the numerical solution of the Navier-Stokes equations for incompressible viscous flow, C.R. Acad. Sc. Paris, Série 1, 325, 1997, 783–791.

    MATH  MathSciNet  Google Scholar 

  11. Dean, E. J., Glowinski, R. and Pan, T. W., A wave equation approach to the numerical simulation of incompressible viscous fluid flow modeled by the NavierStokes equations, Mathematical and Numerical Aspects of Wave Propagation, De Santo, J. A. (ed.), SIAM, Philadelphia, 1998, 65–74.

    Google Scholar 

  12. Dubus, C. and Fournier, J. B., A Gaussian model for the membrane of red blood cells with cytoskeletal defects, Europhys. Lett., 75, 2006, 181–187.

    Article  MathSciNet  Google Scholar 

  13. Dupin, M. M., Halliday, I., Care, C. M., et al., Modeling the flow of dense suspensions of deformable particles in three dimensions, Phys. Rev. E, 75, 2007, 066707.

    Article  Google Scholar 

  14. Dzwinel, W., Boryczko, K. and Yuen, D., A discrete-particle model of blood dynamics in capillary vessels, J. Colloid Interface Sci., 258, 2003, 163173.

    Article  Google Scholar 

  15. Eggleton, C. and Popel, A., Large deformation of red blood cell ghosts in a simple shear flow, Phys. Fluids, 10, 1998, 1834–1845.

    Article  Google Scholar 

  16. Fahraeus, R. and Lindqvist, T., The viscosity of blood in narrow capillary tubes, Am. J. of Physiol., 96, 1931, 562–568.

    Google Scholar 

  17. Ferrari, M., Cancer nanotechnology: opportunities and challenges, Nat. Rev. Cancer, 5, 2005, 161–171.

    Article  Google Scholar 

  18. Fischer, T. M., Shape memory of human red blood cells, Biophys. J., 86, 2004, 3304–3313.

    Article  Google Scholar 

  19. Fischer, T. M., Stöhr-Liesen, M. and Schmid-Schönbein, H., The red cell as a fluid droplet: tank tread-like motion of the human erythrocyte membrane in shear flow, Science, 202, 1978, 894–896.

    Article  Google Scholar 

  20. Glowinski, R., Finite element methods for incompressible viscous flow, Handbook of Numerical Analysis, Vol. IX, Ciarlet, P. G. and Lions, J. L. (eds.), North-Holland, Amsterdam, 2003, 7–1176.

    Google Scholar 

  21. Glowinski, R., Pan, T.W., Hesla, T., et al., A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow, J. Comput. Phys., 169, 2001, 363–427.

    Article  MATH  MathSciNet  Google Scholar 

  22. Hansen, J. C., Skalak, S. and Hoger, A., An elastic network model based on the structure of the red blood cell membrane skeleton, Biophys. J., 70, 1996, 146–166.

    Article  Google Scholar 

  23. Hosseini, S. M. and Feng, J. J., A particle-based model for the transport of erythrocytes in capillaries, Chem. Engng. Sci., 64, 2009, 4488–4497.

    Article  Google Scholar 

  24. Keller, S. R. and Skalak, R., Motion of a tank-treading ellipsoidal particle in a shear flow, J. Fluid Mech., 120, 1982, 27–47.

    Article  MATH  Google Scholar 

  25. La Van, A. D., Mcguire, T. M. and Langer, R., Small-scale systems for in vivo drug delivery, Nat. Biotech., 21, 2003, 1184–1191.

    Article  Google Scholar 

  26. Li, H. B., Yi, H. H., Shan, X. W. and Fang, H. P., Shape changes and motion of a vesicle in a fluid using a lattice Boltzmann model, Europhysics Letters, 81, 2008, 54002.

    Article  Google Scholar 

  27. Liu, L. and Liu, W. K., Rheology of red blood cell aggregation by computer simulation, J. Comput. Phys., 220, 2006, 139–154.

    Article  MATH  MathSciNet  Google Scholar 

  28. Liu, W. K., Liu, Y., Farrell, D., et al., Immersed finite element method and its applications to biological systems, Comput. Methods Appl. Mech. Eng., 195, 2006, 1722–1749.

    Article  MATH  MathSciNet  Google Scholar 

  29. Pan, T. W. and Glowinski, R., Direct simulation of the motion of neutrally buoyant circular cylinders in plane Poiseuille flow, J. Comput. Phys., 181, 2002, 260–279.

    Article  MATH  MathSciNet  Google Scholar 

  30. Pan, T. W., Joseph, D. D., Bai, R., et al., Fluidization of 1204 spheres: simulation and experiments, J. Fluid Mech., 451, 2002, 169–191.

    Article  MATH  MathSciNet  Google Scholar 

  31. Peskin, C. S., Numerical analysis of blood flow in the heart, J. Comput. Phys., 25, 1977, 220–252.

    Article  MATH  MathSciNet  Google Scholar 

  32. Peskin, C. S., The immersed boundary method, Acta Numer., 11, 2002, 479–517.

    Article  MATH  MathSciNet  Google Scholar 

  33. Peskin, C. S. and McQueen, D. M., Modeling prosthetic heart valves for numerical analysis of blood flow in the heart, J. Comput. Phys., 37, 1980, 11332.

    Article  MathSciNet  Google Scholar 

  34. Pozrikidis, C., Modeling and Simulation of Capsules and Biological Cells, Chapman & Hall/CRC, Boca Raton, 2003.

    Book  MATH  Google Scholar 

  35. Secomb, T. W., Styp-Rekowska, B. and Pries, A. R., Two-dimensional simulation of red blood cell deformation and lateral migration in microvessels, Ann. Biomed. Eng., 35, 2007, 755–765.

    Article  Google Scholar 

  36. Tsubota, K., Wada, S. and Yamaguchi, T., Simulation study on effects of hematocrit on blood flow properties using particle method, J. Biomech. Sci. Eng., 1, 2006, 159–170.

    Article  Google Scholar 

  37. Vera, C., Skelton, R., Bossens, F. and Sung, L. A., 3-D nanomechanics of an erythrocyte junctional complex in equibiaxial and anisotropic deformations, Ann. Biomed. Eng., 33, 2005, 1387–1404.

    Article  Google Scholar 

  38. Wang, T., Pan, T. W., Xing, Z. and Glowinski, R., Numerical simulation of rheology of red blood cell rouleaux in microchannels, Phys. Rev. E, 79, 2009, 041916.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsorng-Whay Pan.

Additional information

Dedicated to Professor Roger Temam on the Occasion of his 70th Birthday

Project supported by the National Science Foundation of the United States (Nos. ECS-9527123, CTS.-9873236, DMS-9973318, CCR-9902035, DMS-0209066, DMS-0443826, DMS-0914788).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pan, TW., Shi, L. & Glowinski, R. A DLM/FD/IB method for simulating cell/cell and cell/particle interaction in microchannels. Chin. Ann. Math. Ser. B 31, 975–990 (2010). https://doi.org/10.1007/s11401-010-0609-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11401-010-0609-0

Keywords

2000 MR Subject Classification

Navigation