Skip to main content
Log in

A spectroscopic study on U(VI) biomineralization in cultivated Pseudomonas fluorescens biofilms isolated from granitic aquifers

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The interaction between the Pseudomonas fluorescens biofilm and U(VI) were studied using extended X-ray absorption fine structure spectroscopy (EXAFS), and time-resolved laser fluorescence spectroscopy (TRLFS). In EXAFS studies, the formation of a stable uranyl phosphate mineral, similar to autunite (Ca[UO2]2[PO4]2•2–6H2O) or meta-autunite (Ca[UO2]2[PO4]2•10–12H2O) was observed. This is the first time such a biomineralization process has been observed in P. fluorescens. Biomineralization occurs due to phosphate release from the cellular polyphosphate, likely as a cell’s response to the added uranium. It differs significantly from the biosorption process occurring in the planktonic cells of the same strain. TRLFS studies of the uranium-contaminated nutrient medium identified aqueous Ca2UO2(CO3)3 and UO2(CO3)3 4− species, which in contrast to the biomineralization in the P. fluorescens biofilm, may contribute to the transport and migration of U(VI). The obtained results reveal that biofilms of P. fluorescens may play an important role in predicting the transport behavior of uranium in the environment. They will also contribute to the improvement of remediation methods in uranium-contaminated sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allison DG, Ruiz B, SanJose C, Jaspe A, Gilbert P (1998) Extracellular products as mediators of the formation and detachment of Pseudomonas fluorescens biofilms. FEMS Microbiol Lett 167:179–184

    Article  CAS  Google Scholar 

  • Ankudinov AL, Ravel B, Rehr JJ, Conradson SD (1998) Real-space multiple-scattering calculation and interpretation of x-ray-absorption near-edge structure. Phys Rev B 58:7565

    Article  CAS  Google Scholar 

  • Beazley MJ, Martinez RJ, Sobecky PA, Webb SM, Taillefert M (2007) Uranium biomineralization as a result of bacterial phosphatase activity: insights from bacterial isolates from a contaminated subsurface. Environ Sci Technol 41:5701–5707

    Article  CAS  Google Scholar 

  • Bencheikh-Latmani R, Leckie JO (2003) Association of uranyl with the cell wall of Pseudomonas fluorescens inhibits metabolism. Geochim Cosmochim Acta 67(21):4057–4066

    Article  CAS  Google Scholar 

  • Bernhard G, Geipel G (2007) Bestimmung der Bindungsform des Urans in Mineralwässern. Vom Wasser 105(3):7–10

    CAS  Google Scholar 

  • Bernhard G, Geipel G, Brendler V, Nitsche H (1996) Speciation of uranium in seepage waters from a mine tailing pile studied by time-resolved laser-induced fluorescence spectroscopy (TRLFS). Radiochim Acta 74:87–91

    CAS  Google Scholar 

  • Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM (1995) Microbial biofilms. Annu Rev Microbiol 49:711–745

    Article  CAS  Google Scholar 

  • De Beer D, Stoodley P, Roe F, Lewandowski Z (1994) Effects of biofilm structures on oxygen distribution and mass transport. Biotechnol Bioeng 43:1131–1138

    Article  Google Scholar 

  • Flemming H-C (1991) Biofilme und Wassertechnologie. Teil 1: Entstehung, Aufbau, Zusammensetzung und Eigenschaften von Biofilmen. gwf-Wasser/Abwasser 132(4):197–207

  • Francis AJ, Gillow JB, Dodge CJ (1998) Role of bacteria as biocolloids in the transport of actinides from a deep underground radioactive waste repository. Radiochim Acta 82:347–354

    CAS  Google Scholar 

  • Francis AJ, Gillow JB, Dodge CJ, Harris R, Beveridge TJ, Papenguth HW (2004) Uranium association with halophilic and non-halophilic bacteria and archaea. Radiochim Acta 92:481–488

    Article  CAS  Google Scholar 

  • Geipel G (2006) Some aspects of actinide speciation by laser induced spectroscopy. Coord Chem Rev 250:844–854

    Article  CAS  Google Scholar 

  • Geipel G, Thieme M, Bernhard G, Nitsche H (1994) Distribution of uranium and radionuclides in a uranium-mining rockpile in schlema, Saxony, Germany. Radiochim Acta 66(67):305–308

    Google Scholar 

  • Geissler A, Selenska-Pobell (2005) Addition of U(VI) to a uranium mining waste sample and resulting changes in the indigenous bacterial community. Geobiology 3:275–285

  • Grenthe I, Fuger J, Konings RJM, Lemire RJ, Muller AJ, Nguyen-Trung C, Wanner H (1992) Chemical thermodynamics of uranium. Elsevier, Amsterdam

    Google Scholar 

  • Guillaumont R, Fanghänel T, Fuger J, Grenthe I, Neck V, Palmer DA, Rand MH (2003) Update on the chemical thermodynamics of uranium, neptunium, plutonium, americium and technetium. Chemical Thermodynamics 5. (ed. OECD Nuclear Energy Agency). Elsevier, Amsterdam

    Google Scholar 

  • Harrison JJ, Ceri H, Stremick CA, Turner RJ (2004) Differences in biofilm and planktonic cell mediated reduction of metalloid oxyanions. FEMS Microbiol Lett 235:357–362

    Article  CAS  Google Scholar 

  • Hudson EA, Allen PG, Terminello LJ, Denecke MA, Reich T (1996) Polarized X-ray-absorption spectroscopy of uranyl ion: comparison of experiment and theory. Phys Rev B 54:156–165

    Article  CAS  Google Scholar 

  • Jerden JL, Sinha AK (2003) Phosphate based immobilization of uranium in an oxidizing bedrock aquifer. Appl Geochem 18:823–843

    Article  CAS  Google Scholar 

  • Jroundi F, Merroun ML, Arias JM, Rossberg A, Selenska-Pobell S, González-Munoz MT (2007) Spectroscopic and microscopic characterization of uranium biomineralization in Myxococcus xanthus. Geomicrobiol J 24:441–449

    Article  CAS  Google Scholar 

  • Kalmykov SN, Choppin GR (2000) Mixed Ca2+/UO2 2+/CO3 2− complex formation at different ionic strengths. Radiochim Acta 88:603–606

    Article  CAS  Google Scholar 

  • Krawczyk-Bärsch E, Lünsdorf H, Arnold T, Brendler V, Eisbein E, Jenk U, Zimmermann U (2011) The influence of biofilms on the migration of uranium in acid mine drainage (AMD) waters. Sci Total Environ 409:3059–3065

    Article  Google Scholar 

  • Krawczyk-Bärsch E, Lünsdorf H, Pedersen K, Arnold T, Brendler V, Bok F, Steudtner R, Lehtinen A, Brendler V (2012) Immobilization of uranium in biofilm microorganisms exposed to groundwater seeps over granitic rock tunnel walls in Olkiluoto, Finland. Geochim Cosmochim Acta 96:94–104

    Article  Google Scholar 

  • Krueger S, Olson GJ, Johnsonbaugh D, Beveridge TJ (1993) Appl Environ Microbiol 59:4056–4064

    CAS  Google Scholar 

  • Lawrence JR, Korber DR, Hoyle BD, Costerton JW, Caldwell DE (1991) Optical sectioning of microbial biofilms. J Bacteriol 173:6558–6567

    CAS  Google Scholar 

  • Lloyd JR, Macaskie LE (2002) Biochemical basis of microbe-radionuclide interactions. In: Keith-Roach MJ, Livens FR (eds) Interactions of microorganisms with radionuclides. Elsevier Sciences, Oxford, pp 313–342

    Chapter  Google Scholar 

  • Lütke L, Moll H, Bernhard G (2012) Insights into the uranium(VI) speciation with Pseudomonas fluorescens on a molecular level. Dalton Trans 41:13370–13378

    Article  Google Scholar 

  • Makarov ES, Ivanov VI (1960) The crystalline structure of Ca(UO2)2(PO4)2•6H2O meta-autunite. Dokl Akad Nauk SSSR 132(3):673–676

    CAS  Google Scholar 

  • Martinez RJ, Beazley MJ, Taillefert M, Arakaki AK, Skolnick J, Sobecky PA (2007) Aerobic U(VI) bioprecipitation by metal-resistant bacteria isolated from radionuclide- and metal-contaminated subsurface soils. Environ Microbiol 9(12):3122–3133

    Article  CAS  Google Scholar 

  • Matz W, Schell N, Bernhard G, Prokert F, Reich T, Claussner J, Oehme W, Schlenk R, Dienel S, Funke H, Eichhorn F, Betzl M, Prohl D, Strauch U, Hüttig G, Krug H, Neumann W, Brendler V, Reichel P, Denecke MA, Nitsche H (1999) ROBL - a CRG beamline for radiochemistry and materials research at the ESRF. J Synchrotron Radiat 6:1076

    Article  CAS  Google Scholar 

  • Merroun ML, Selenska-Pobell S (2008) Bacterial interactions with uranium: an environmental perspective. J Contam Hydrol 102:285–295

    Article  CAS  Google Scholar 

  • Merroun ML, Hennig C, Rossberg A, Reich T, Selenska-Pobell S (2003) Characterization of U(VI)-Acidithiobacillus ferrooxidans complexes using EXAFS, transmission electron microscopy, and energy-dispersive X-ray analysis. Radiochim Acta 91:583–591

    Article  CAS  Google Scholar 

  • Merroun ML, Raff J, Rossberg A, Hennig C, Reich T, Selenska-Pobell S (2005) Complexation of uranium by cells and S-layer sheets of bacillus sphaericus JG-A12. Appl Environ Microbiol 71(9):5532–5543

    Article  CAS  Google Scholar 

  • Merroun ML, Nedelkova M, Rossberg A, Hennig C, Selenska-Pobell S (2006) Interaction mechanisms of bacterial strains isolated from extreme habitats with uranium. Radiochim Acta 94:723–729

    Article  CAS  Google Scholar 

  • Moulin C, Beaucaire C, Decambox P, Mauchien P (1990) Determination of uranium in solution at the ng L-1 level by time resolved laser-induced spectrofluorimetry—application to geological samples. Anal Chim Acta 238(2):291–296

    Article  CAS  Google Scholar 

  • Moulin C, Decambox P, Moulin V, Decaillon JG (1995) Uranium speciation in solution by time-resolved laser-induced fluorescence. Anal Chem 67(2):348–353

    Article  CAS  Google Scholar 

  • Nazina TN, Luk′yanova EA, Zakharova EV, Konstantinova LI, Kalmykov SN, Poltaraus AB, Zubkov AA (2010) Microorganisms in a disposal site for liquid radioactive wastes and their influence on radionuclides. Geomicrobiol J 27:473–486

    Article  CAS  Google Scholar 

  • Nedelkova M, Merroun ML, Rossberg A, Hennig C, Selenska-Pobell S (2007) Microbacterium isolates from the vicinity of a radioactive waste depository and their interactions with uranium. FEMS Microbiol Ecol 59:694–705

    Article  CAS  Google Scholar 

  • Neu MP, Boukhalfa H, Merroun ML (2010) Biomineralization and biotransformations of actinide materials. MRS Bull 35:849–857

    Article  CAS  Google Scholar 

  • O’Toole GA, Kolter R (1998) Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signaling pathways: a genetic analysis. Mol Microbiol 28(3):449–461

    Article  Google Scholar 

  • Patel TD, Bott TR (1991) Oxygen diffusion through a developing biofilm of Pseudomonas fluorescens. J Chem Technol Biotechnol 52:87–199

    Google Scholar 

  • Pedersen K (2005) Microorganisms and their influence on radionuclide migration in igneous rock environments. J Nucl Radiochem Sci 6(1):11–15

    Article  CAS  Google Scholar 

  • Pons MP, Fusté MC (1993) Uranium uptake by immobilized cells of Pseudomonas strain EPS 5028. Appl Microbiol Biotechnol 39:661–665

    Article  CAS  Google Scholar 

  • Radeva G, Selenska-Pobell S (2005) Bacterial diversity in water samples from uranium wastes as demonstrated by 16S rDNA and ribosomal intergenic spacer amplification retrievals. Can J Microbiol 51:910–923

    Article  CAS  Google Scholar 

  • Ressler T (1998) WinXAS: a program for X-ray absorption spectroscopy data analysis under MS-Windows. J Synchrotron Radiat 5:118

    Article  CAS  Google Scholar 

  • Robertson M, Hapca SM, Moshynets O, Spiers A (2013) Air-liquid interface biofilm formation by psychrotrophic pseudomonads recovered from spoilt meat. Antonie Van Leeuwenhoek 103:251–259

    Article  Google Scholar 

  • Späth R, Flemming H-C, Wuertz S (1998) Sorption properties of biofilms. Water Sci Technol 37:207–210

    Article  Google Scholar 

  • Steudtner R, Sachs S, Schmeide K, Brendler V, Bernhard G (2011) Ternary uranium(VI) carbonato humate complex studied by cryo-TRLFS. Radiochim Acta 99:687–692

    Article  CAS  Google Scholar 

  • Stoodley P, deBeer D, Lewandowski Z (1994) Liquid flow in biofilm systems. Appl Environ Microbiol 60:2711–2716

    CAS  Google Scholar 

  • Teitzel GM, Parsek MR (2003) Heavy metal resistance of biofilm and planktonic Pseudomonas aeruginosa. Appl Environ Microbiol 69:2313–2320

    Article  CAS  Google Scholar 

  • Ude S, Arnold DL, Moon CD, Timms-Wilson T, Spiers AJ (2006) Biofilm formation and cellulose expression among diverse environmental Pseudomonas isolates. Environ Microbiol 8(11):1997–2011

    Article  CAS  Google Scholar 

  • van Hullebusch ED, Zandvoort MH, Lens PNL (2003) Metal immobilisation by biofilms: mechanisms and analytical tools. Rev Environ Sci Biotechnol 2:9–33

    Article  Google Scholar 

  • Webb SM (2005) Sixpack: a graphical user interface for XAS analysis using IFEFFIT. Phys Scr T115:1011–1014

    Article  CAS  Google Scholar 

  • Workentine ML, Harrison JJ, Pernilla PU, Stenroos U, Ceri H, Turner RJ (2008) Pseudomonas fluorescens′ view of the periodic table. Environ Microbiol 10(1):238–250

    CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the Federal Ministry of Economics and Technology (BMWi) under contract number 02E10618. The X-ray absorption spectroscopy (XAS) measurements were performed at BM20 (ROBL) at the European Synchrotron Radiation Facility (ESRF) in Grenoble (France). In particular, thanks are given to Andreas Scheinost and Christoph Hennig (ROBL Group, ESRF, Grenoble, France) for their support during the XAS measurements and their help in evaluating the data. We thank Ursula Schaefer, Aline Ritter, and Carola Eckardt for the analysis. Stephan Weiß′s skilful work on sample preparation for EXAFS is gratefully acknowledged. Nina Huittinen is thanked for the fruitful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evelyn Krawczyk-Bärsch.

Additional information

Responsible editor: Robert Duran

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krawczyk-Bärsch, E., Lütke, L., Moll, H. et al. A spectroscopic study on U(VI) biomineralization in cultivated Pseudomonas fluorescens biofilms isolated from granitic aquifers. Environ Sci Pollut Res 22, 4555–4565 (2015). https://doi.org/10.1007/s11356-014-3671-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-3671-4

Keywords

Navigation