Skip to main content
Log in

Sequencing of two Sunflower chlorotic mottle virus isolates obtained from different natural hosts shed light on its evolutionary history

  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

Sunflower chlorotic mottle virus (SuCMoV), the most prevalent virus of sunflower in Argentina, was reported naturally infecting not only sunflower but also weeds. To understand SuCMoV evolution and improve the knowledge on its variability, the complete genomic sequences of two SuCMoV isolates collected from Dipsacus fullonum (-dip) and Ibicella lutea (-ibi) were determined from three overlapping cDNA clones and subjected to phylogenetic and recombination analyses. SuCMoV-dip and -ibi genomes were 9,953-nucleotides (nt) long; their sequences contained an open reading frame of 9,561 nucleotides, which encoded a polyprotein of 3,187 amino acids flanked by a 5′-noncoding region (NCR) of 135 nt and a 3′-NCR of 257 nt. SuCMoV-dip and -ibi genome nucleotide sequences were 90.9 identical and displayed 90 and 94.6 % identity to that of SuCMoV-C, and 90.8 and 91.4 % identity to that of SuCMoV-CRS, respectively. P1 of SuCMoV-dip and -ibi was 3-nt longer than that of SuCMoV-CRS, but 12-nt shorter than that of SuCMoV-C. Two recombination events were detected in SuCMoV genome and the analysis of dN/dS ratio among SuCMoV complete sequences showed that the genomic regions are under different evolutionary constraints, suggesting that SuCMoV evolution would be conservative. Our findings provide evidence that mutation and recombination would have played important roles in the evolutionary history of SuCMoV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. G. Dujovny, T. Usugi, K. Shohara, S. Lenardon, Plant Dis. 82, 470–474 (1998)

    Article  Google Scholar 

  2. S. Lenardon, in Enfermedades del girasol en la Argentina, manual de reconocimiento, ed. by V. Pereyra. (INTA Centro Regional Balcarce, 1994), pp. 99–103

  3. M.J. Adams, F.M. Zerbini, R. French, F. Rabenstein, D.C. Stenger, J.P.T. Valkonen, in Virus Taxonomy: 9th Report of the International Committee on the Taxonomy of Viruses, ed. by A.M.Q. King, M.J. Adams, E.B. Carstens (Elsevier Academic Press, San Diego, 2011), pp. 1069–1089

    Google Scholar 

  4. A.K. Inoue-Nagata, P.A. Oliveira, L.S. Dutra, T. Nagata, Virus Genes 33, 45–49 (2006)

    Article  PubMed  CAS  Google Scholar 

  5. G. Dujovny, T. Sasaya, H. Koganezawa, T. Usugi, K. Shohara, S. Lenardon, Arch. Virol. 145, 2249–2258 (2000)

    Article  PubMed  CAS  Google Scholar 

  6. F. Giolitti, N. Bejerman, S. de Breuil, S. Lenardon, J. Phytopathol. 158, 536–541 (2010)

    Article  CAS  Google Scholar 

  7. N. Bejerman, F. Giolitti, S. de Breuil, S. Lenardon, Arch. Virol. 155, 1331–1335 (2010)

    Article  PubMed  CAS  Google Scholar 

  8. F. Giolitti, N. Bejerman, S. Lenardon, J. Phytopathol 157, 325–328 (2009)

    Article  CAS  Google Scholar 

  9. N. Bejerman, F. Giolitti, S. de Breuil, S. Lenardon . (2011). In Book of abstracts, 2nd Phytopathology Argentinean Congress(p. 248). Argentina: Mar del Plata

  10. K. Ohshima, Y. Yamaguchi, R. Hirota, T. Hamamoto, K. Tomimura, Z. Tan, T. Sano, F. Azuhata, J.A. Walsh, J. Fletcher, J. Chen, A. Gera, A. Gibbs, J. Gen. Virol. 83, 1511–1521 (2002)

    PubMed  CAS  Google Scholar 

  11. I.M. Moreno, J.M. Malpica, J.A. Diaz-Pendon, E. Moriones, A. Fraile, F. García-Arenal, Virology 318, 451–460 (2004)

    Article  PubMed  CAS  Google Scholar 

  12. F. García-Arenal, A. Fraile, J.M. Malpica, Annu. Rev. Phytopathol. 39, 157–186 (2001)

    Article  PubMed  Google Scholar 

  13. T. Ogawa, Y. Tomitaka, A. Nakagawa, K. Ohshima, Virus Res. 131, 199–212 (2008)

    Article  PubMed  CAS  Google Scholar 

  14. A. Padhi, K. Ramu, Virus Genes 42, 282–285 (2011)

    Article  PubMed  CAS  Google Scholar 

  15. S. Wylie, R. Jones, Phytopathology 99, 512–518 (2009)

    Article  PubMed  CAS  Google Scholar 

  16. T. Tsuneyoshi, T. Matsumi, T.C. Deng, I. Sako, S. Sumi, Arch. Virol. 143, 1093–1107 (1998)

    Article  PubMed  CAS  Google Scholar 

  17. D. Huson, D. Bryant, Mol. Biol. Evol. 23, 254–267 (2006)

    Google Scholar 

  18. D.P. Martin, P. Lemey, M. Lott, V. Moulton V. D. Posada, P. Lefeuvre, Bioinformatics 26, 2462–2463 (2010)

  19. K. Tamura, D. Peterson, N. Peterson, G. Stecher, M. Nei, S. Kumar, Mol. Biol. Evol. 28, 2731–2739 (2011)

    Article  PubMed  CAS  Google Scholar 

  20. P. Pamilo, N.O. Bianchi, Mol. Biol. Evol. 10, 271–281 (1993)

    PubMed  CAS  Google Scholar 

  21. W.H. Li, J. Mol. Evol. 36, 96–99 (1993)

    Article  PubMed  CAS  Google Scholar 

  22. S.L. Kosakovsky Pond, S.D.W. Frost, Bioinformatics 21, 2531–2533 (2005)

    Article  Google Scholar 

  23. B. Chung, W.A. Miller, J.F. Atkins, A.E. Firth, Proc. Natl. Acad. Sci. USA 105, 5897–5902 (2008)

    Article  PubMed  CAS  Google Scholar 

  24. X. Xia, Z. Xie, J. Heredity 92, 371–373 (2001)

    Article  CAS  Google Scholar 

  25. X. Gu, W. Li, J. Mol. Evol. 40, 464–473 (1995)

    Article  PubMed  CAS  Google Scholar 

  26. J.J. Valli, J.A. Lopez-Moya, J. García, Gen. Virol. 88, 1016–1028 (2007)

    Article  CAS  Google Scholar 

  27. R. Krause-Sakate, H. Fakhfakh, M. Peypelut, M. Pavan, F. Zerbini, M. Marrakchi, T. Candresse, O. Le Gall, Arch. Virol. 149, 191–197 (2004)

    PubMed  CAS  Google Scholar 

  28. M. Glasa, T. Malinowski, L. Predajňa, G.N. Pupola, D. Dekena, L. Michalczuk, T. Candresse, Phytopathology 101, 980–985 (2011)

    Article  PubMed  CAS  Google Scholar 

  29. J.K. Seo, K. Ohshima, H.G. Lee, M. Son, H.S. Choi, S.H. Lee, S.H. Sohn, K.H. Kim, Virology 393, 91–103 (2009)

    Article  PubMed  CAS  Google Scholar 

  30. C. Desbiez, H. Lecoq, Arch. Virol. 153, 1749–1754 (2008)

    Article  PubMed  CAS  Google Scholar 

  31. L. Glais, M. Tribodet, C. Kerlan, Arch. Virol. 147, 363–378 (2002)

    Article  PubMed  CAS  Google Scholar 

  32. H.L. Zaaijer, F.J. van Hemert, M.H. Koppelman, V.V. Lukashov, J. Gen. Virol. 88, 2137–2143 (2007)

    Article  PubMed  CAS  Google Scholar 

  33. H.Y. Wang, J.L. Liu, R. Gao, J. Chen, H.Y. Shao, X.D. Li, Virus Genes 38, 421–428 (2009)

    Article  PubMed  CAS  Google Scholar 

  34. B. Moury, C. Morel, E. Johansen, M. Jacquemond, J. Gen. Virol. 83, 2563–2573 (2002)

    PubMed  CAS  Google Scholar 

  35. B. Moury, C. Morel, E. Johansen, S. Souche, V. Ayme, C. Caranta, A. Palloix, M. Jacquemond, Mol. Plant Microbe Interact. 17, 322–329 (2004)

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank INTA for financial support. We are grateful to Dr. E. Taleisnik for editing the manuscript and to Dr. K. Ohshima and Dr. M. Adams for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Bejerman.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 39 kb)

Supplementary material 2 (DOC 29 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bejerman, N., Giolitti, F., de Breuil, S. et al. Sequencing of two Sunflower chlorotic mottle virus isolates obtained from different natural hosts shed light on its evolutionary history. Virus Genes 46, 105–110 (2013). https://doi.org/10.1007/s11262-012-0817-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11262-012-0817-7

Keywords

Navigation