Skip to main content
Log in

Position independent and copy-number-related expression of the bovine neonatal Fc receptor α-chain in transgenic mice carrying a 102 kb BAC genomic fragment

  • Original Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

We generated and characterized transgenic mice carrying a 102 kb bovine genomic fragment, encoding the neonatal Fc receptor α-chain (bFcRn). FcRn plays a crucial role in the maternal IgG transport and it also regulates the IgG and albumin homeostasis. Some of its functions and transcriptional regulation show species specific differences. The FcRn heterodimer is composed of the α-chain and beta-2-microglobulin (β2 m). A bacterial artificial chromosome containing the bovine FcRn α-chain gene (bFCGRT) with its 44 kb 5′ and 50 kb long 3′ flanking sequences was microinjected into fertilized mouse oocytes. Two of the transgenic lines generated, showed copy number related and integration site independent bFcRn expression. The bFcRn α-chain forms a functional receptor with the mouse β2-microglobulin and extends the half-life of the mouse IgG in transgenic mice. Our results underline the feasibility of creating BAC transgenic mouse models of economically important bovine genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

FcRn:

neonatal Fc receptor

FCGRT:

gene of the FcRn α-chain

β2 m:

beta-2-microglobulin

IgG:

immunoglobulin G

BAC:

bacterial artificial chromosome

wt:

wild type

tg:

transgenic

References

  • Al-Hasani K, Vadolas J, Voullaire L, Williamson R, Ioannou PA (2004) Complementation of alpha-thalassaemia in alpha-globin knockout mice with a 191 kb transgene containing the human alpha-globin locus. Transgenic Res 13:235–243

    Article  PubMed  CAS  Google Scholar 

  • Andersen JT, Dee Qian J, Sandlie I (2006) The conserved histidine 166 residue of the human neonatal Fc receptor heavy chain is critical for the pH-dependent binding to albumin. Eur J Immunol 36:3044–3051

    Article  PubMed  CAS  Google Scholar 

  • Anderson CL, Chaudhury C, Kim J, Bronson CL, Wani MA, Mohanty S (2006) Perspective—FcRn transports albumin: relevance to immunology and medicine. Trends Immunol 27:343–348

    Article  PubMed  CAS  Google Scholar 

  • Butler JE (1999) Immunoglobulins and immunocytes in animal milks. In: Ogra PL (ed) Mucosal immunology. Academic Press, New York, pp1531–1554

    Google Scholar 

  • Chaudhury C, Mehnaz S, Robinson JM, Hayton WL, Pearl DK, Roopenian DC, Anderson CL (2003) The major histocompatibility complex-related Fc receptor for IgG (FcRn) binds albumin and prolongs its lifespan. J Exper Med 197:315–322

    Article  CAS  Google Scholar 

  • Chaudhury C, Brooks CL, Carter DC, Robinson JM, Anderson CL (2006) Albumin binding to FcRn: distinct from the FcRn-IgG interaction. Biochemistry 45:4983–4990

    Article  PubMed  CAS  Google Scholar 

  • Claypool SM, Dickinson BL, Yoshida M, Lencer WI, Blumberg RS (2002) Functional reconstitution of human FcRn in Madin-Darby canine kidney cells requires co-expressed human beta 2-microglobulin. J Biol Chem 277:28038–28050

    Article  PubMed  CAS  Google Scholar 

  • Coutinho JM, Singaraja RR, Kang M, Arenillas DJ, Bertram LN, Bissada N, Staels B, Fruchart JC, Fievet C, Joseph-George AM, Wasserman WW, Hayden MR (2005) Complete functional rescue of the ABCA1-/- mouse by human BAC transgenesis. J Lipid Res 46:1113–1123

    Article  PubMed  CAS  Google Scholar 

  • Dobie KW, Lee M, Fantes JA, Graham E, Clark AJ, Springbett A, Lathe R, McClenaghan M (1996) Variegated transgene expression in mouse mammary gland is determined by the transgene integration locus. Proc Natl Acad Sci USA 93:6659–6664

    Article  PubMed  CAS  Google Scholar 

  • Eggen A, Gautier M, Billaut A, Petit E, Hayes H, Laurent P, Urban C, Pfister-Genskow M, Eilertsen K, Bishop MD (2001) Construction and characterization of a bovine BAC library with four genome-equivalent coverage. Genet Sel Evol 33:543–548

    Article  PubMed  CAS  Google Scholar 

  • Ellinger I, Reischer H, Lehner C, Leitner K, Hunziker W, Fuchs R (2005) Overexpression of the human neonatal Fc-receptor alpha-chain in trophoblast-derived BeWo cells increases cellular retention of beta2-microglobulin. Placenta 26:171–182

    Article  PubMed  CAS  Google Scholar 

  • Festenstein R, Tolaini M, Corbella P, Mamalaki C, Parrington J, Fox M, Miliou A, Jones M, Kioussis D (1996) Locus control region function and heterochromatin-induced position effect variegation. Science 271:1123–1125

    Article  PubMed  CAS  Google Scholar 

  • Ghetie V, Hubbard JG, Kim JK, Tsen MF, Lee Y, Ward ES (1996) Abnormally short serum half-lives of IgG in beta 2-microglobulin-deficient mice. Eur J Immunol 26:690–696

    Article  PubMed  CAS  Google Scholar 

  • Ghetie V, Popov S, Borvak J, Radu C, Matesoi D, Medesan C, Ober RJ, Ward ES (1997) Increasing the serum persistence of an IgG fragment by random mutagenesis. Nat Biotechnol 15:637–640

    Article  PubMed  CAS  Google Scholar 

  • Ghetie V, Ward ES (2002) Transcytosis and catabolism of antibody. Immunol Res 25:97–113

    Article  PubMed  CAS  Google Scholar 

  • Giraldo P, Montoliu L (2001) Size matters: use of YACs, BACs and PACs in transgenic animals. Transgenic Res 10:83–103

    Article  PubMed  CAS  Google Scholar 

  • Israel EJ, Wilsker DF, Hayes KC, Schoenfeld D, Simister NE (1996) Increased clearance of IgG in mice that lack beta 2-microglobulin: possible protective role of FcRn. Immunology 89:573–578

    Article  PubMed  CAS  Google Scholar 

  • Junghans RP, Anderson CL (1996) The protection receptor for IgG catabolism is the beta2-microglobulin-containing neonatal intestinal transport receptor. Proc Natl Acad Sci USA 93:5512–5516

    Article  PubMed  CAS  Google Scholar 

  • Jurka J, Kapitonov VV, Pavlicek A, Klonowski P, Kohany O, Walichiewicz J (2005) Repbase Update, a database of eukaryotic repetitive elements. Cytogenet Genome Res 110:462–467

    Article  PubMed  CAS  Google Scholar 

  • Kacskovics I, Wu Z, Simister NE, Frenyo LV, Hammarstrom L (2000) Cloning and characterization of the bovine MHC class I-like Fc receptor. J Immunol 164:1889–1897

    PubMed  CAS  Google Scholar 

  • Kacskovics I, Kis Z, Mayer B, West AP Jr, Tiangco NE, Tilahun M, Cervenak L, Bjorkman PJ, Goldsby RA, Szenci O, Hammarstrom L (2006) FcRn mediates elongated serum half-life of human IgG in cattle. Int Immunol 18:525–536

    Article  PubMed  CAS  Google Scholar 

  • Kim J, Hayton WL, Robinson JM, Anderson CL (2006) Kinetics of FcRn-mediated recycling of IgG and albumin in human: pathophysiology and therapeutic implications using a simplified mechanism-based model. Clin Immunol

  • Lee LG, Connell CR, Bloch W (1993) Allelic discrimination by nick-translation PCR with fluorogenic probes. Nucleic Acids Res 21:3761–3766

    Article  PubMed  CAS  Google Scholar 

  • Lobo ED, Hansen RJ, Balthasar JP (2004) Antibody pharmacokinetics and pharmacodynamics. J Pharm Sci 93:2645–2668

    Article  PubMed  CAS  Google Scholar 

  • Mayer B, Zolnai A, Frenyo LV, Jancsik V, Szentirmay Z, Hammarstrom L, Kacskovics I (2002) Redistribution of the sheep neonatal Fc receptor in the mammary gland around the time of parturition in ewes and its localization in the small intestine of neonatal lambs. Immunology 107:288–296

    Article  PubMed  CAS  Google Scholar 

  • Mayer B, Kis Z, Kajan G, Frenyo LV, Hammarstrom L, Kacskovics I (2004) The neonatal Fc receptor (FcRn) is expressed in the bovine lung. Vet Immunol Immunopathol 98:85–89

    Article  PubMed  CAS  Google Scholar 

  • Mayer B, Doleschall M, Bender B, Bartyik J, Bosze Z, Frenyo LV, Kacskovics I (2005) Expression of the neonatal Fc receptor (FcRn) in the bovine mammary gland. J Dairy Res 72(Spec No):107–112

    Article  PubMed  CAS  Google Scholar 

  • Medesan C, Matesoi D, Radu C, Ghetie V, Ward ES (1997) Delineation of the amino acid residues involved in transcytosis and catabolism of mouse IgG1. J Immunol 158:2211–2217

    PubMed  CAS  Google Scholar 

  • Nagy A, Gertsentein M, Vintersten K, Behringer R (2003) In manipulating the mouse embryo: a laboratory manual. In: Nagy A, Vintersten K, Behringer R (eds) Cold Spring Harbor Press, Cold Spring Harbor, NY, p333

  • Opsahl ML, Springbett A, Lathe R, Colman A, McClenaghan M, Whitelaw CB (2003) Mono-allelic expression of variegating transgene locus in the mouse. Transgenic Res 12:661–669

    Article  PubMed  CAS  Google Scholar 

  • Palmiter RD, Wilkie TM, Chen HY, Brinster RL (1984) Transmission distortion and mosaicism in an unusual transgenic mouse pedigree. Cell 36:869–877

    Article  PubMed  CAS  Google Scholar 

  • Petkova SB, Akilesh S, Sproule TJ, Christianson GJ, Al Khabbaz H, Brown AC, Presta LG, Meng YG, Roopenian DC (2006) Enhanced half-life of genetically engineered human IgG1 antibodies in a humanized FcRn mouse model: potential application in humorally mediated autoimmune disease. Int Immunol 18:1759–1769

    Article  PubMed  CAS  Google Scholar 

  • Praetor A, Hunziker W (2002) Beta(2)-microglobulin is important for cell surface expression and pH-dependent IgG binding of human FcRn. J Cell Sci 115:2389–2397

    PubMed  CAS  Google Scholar 

  • Praetor A, Jones RM, Wong WL, Hunziker W (2002) Membrane-anchored human FcRn can oligomerize in the absence of IgG. J Mol Biol 321:277–284

    Article  PubMed  CAS  Google Scholar 

  • Raguz S, Hobbs C, Yague E, Ioannou PA, Walsh FS, Antoniou M (1998) Muscle-specific locus control region activity associated with the human desmin gene. Dev Biol 201:26–42

    Article  PubMed  CAS  Google Scholar 

  • Rival-Gervier S, Viglietta C, Maeder C, Attal J, Houdebine LM (2002) Position-independent and tissue-specific expression of porcine whey acidic protein gene from a bacterial artificial chromosome in transgenic mice. Mol Reprod Dev 63:161–167

    Article  PubMed  CAS  Google Scholar 

  • Roberts DM, Guenthert M, Rodewald R (1990) Isolation and characterization of the Fc receptor from the fetal yolk sac of the rat. J Cell Biol 111:1867–1876

    Article  PubMed  CAS  Google Scholar 

  • Rodewald R (1976) pH-Dependent binding of immunoglobulins to intestinal cells of the neonatal rat. J Cell Biol 71:666–669

    Article  PubMed  CAS  Google Scholar 

  • Roopenian DC, Christianson GJ, Sproule TJ, Brown AC, Akilesh S, Jung N, Petkova S, Avanessian L, Choi EY, Shaffer DJ, Eden PA, Anderson CL (2003) The MHC class I-like IgG receptor controls perinatal IgG transport, IgG homeostasis, and fate of IgG-Fc-coupled drugs. J Immunol 170:3528–3533

    PubMed  CAS  Google Scholar 

  • Simister NE, Rees AR (1985) Isolation and characterization of an Fc receptor from neonatal rat small intestine. Eur J Immunol 15:733–738

    Article  PubMed  CAS  Google Scholar 

  • Simister NE, Mostov KE (1989) An Fc receptor structurally related to MHC class I antigens. Nature 337:184–187

    Article  PubMed  CAS  Google Scholar 

  • Smit A, Hubley R, Green P (1996–2004) RepeatMasker Open-3.0

  • Smit AF (1993) Identification of a new, abundant superfamily of mammalian LTR-transposons. Nucleic Acids Res 21:1863–1872

    Article  PubMed  CAS  Google Scholar 

  • Smit AF, Riggs AD (1995) MIRs are classic, tRNA-derived SINEs that amplified before the mammalian radiation. Nucleic Acids Res 23:98–102

    Article  PubMed  CAS  Google Scholar 

  • Smit AF, Toth G, Riggs AD, Jurka J (1995) Ancestral, mammalian-wide subfamilies of LINE-1 repetitive sequences. J Mol Biol 246:401–417

    Article  PubMed  CAS  Google Scholar 

  • Stinnakre MG, Soulier S, Schibler L, Lepourry L, Mercier JC, Vilotte JL (1999) Position-independent and copy-number-related expression of a goat bacterial artificial chromosome alpha-lactalbumin gene in transgenic mice. Biochem J 339:33–36

    Article  PubMed  CAS  Google Scholar 

  • Sutherland HG, Kearns M, Morgan HD, Headley AP, Morris C, Martin DI, Whitelaw E (2000) Reactivation of heritably silenced gene expression in mice. Mamm Genome 11:347–355

    Article  PubMed  CAS  Google Scholar 

  • Szalai G, Duester G, Friedman R, Jia H, Lin S, Roe BA, Felder MR (2002) Organization of six functional mouse alcohol dehydrogenase genes on two overlapping bacterial artificial chromosomes. Eur J Biochem 269:224–232

    Article  PubMed  CAS  Google Scholar 

  • Taketo M, Schroeder AC, Mobraaten LE, Gunning KB, Hanten G, Fox RR, Roderick TH, Stewart CL, Lilly F, Hansen CT et al (1991) FVB/N: an inbred mouse strain preferable for transgenic analyses. Proc Natl Acad Sci USA 88:2065–2069

    Article  PubMed  CAS  Google Scholar 

  • Tesson L, Heslan JM, Menoret S, Anegon I (2002) Rapid and accurate determination of zygosity in transgenic animals by real-time quantitative PCR. Transgenic Res 11:43–48

    Article  PubMed  CAS  Google Scholar 

  • Vadolas J, Wardan H, Bosmans M, Zaibak F, Jamsai D, Voullaire L, Williamson R, Ioannou PA (2005) Transgene copy number-dependent rescue of murine beta-globin knockout mice carrying a 183 kb human beta-globin BAC genomic fragment. Biochim Biophys Acta 1728:150–162

    PubMed  CAS  Google Scholar 

  • Yevtodiyenko A, Steshina EY, Farner SC, Levorse JM, Schmidt JV (2004) A 178-kb BAC transgene imprints the mouse Gtl2 gene and localizes tissue-specific regulatory elements. Genomics 84:277–287

    Article  PubMed  CAS  Google Scholar 

  • Yoshida M, Claypool SM, Wagner JS, Mizoguchi E, Mizoguchi A, Roopenian DC, Lencer WI, Blumberg RS (2004) Human neonatal fc receptor mediates transport of IgG into luminal secretions for delivery of antigens to mucosal dendritic cells. Immunity 20:769–783

    Article  PubMed  CAS  Google Scholar 

  • Yoshida M, Kobayashi K, Kuo TT, Bry L, Glickman JN, Claypool SM, Kaser A, Nagaishi T, Higgins DE, Mizoguchi E, Wakatsuki Y, Roopenian DC, Mizoguchi A, Lencer WI, Blumberg RS (2006) Neonatal Fc receptor for IgG regulates mucosal immune responses to luminal bacteria. J Clin Invest 116:2142–2151

    Article  PubMed  CAS  Google Scholar 

  • Zhu X, Peng J, Raychowdhury R, Nakajima A, Lencer WI, Blumberg RS (2002) The heavy chain of neonatal Fc receptor for IgG is sequestered in endoplasmic reticulum by forming oligomers in the absence of beta2-microglobulin association. Biochem J 367:703–714

    Article  PubMed  CAS  Google Scholar 

  • Zuelke KA (1998) Transgenic modification of cows milk for value-added processing. Reprod Fertil Dev 10:671–676

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Grants OTKA T049015, OMFB 1605-1606/2002, the Swedish Research Council and by ESF-COST B20 STSMs to Zs.B. and L.B. WinNonlin software was generously provided through an Academic License by Pharsight Corporation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zsuzsanna Bősze.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bender, B., Bodrogi, L., Mayer, B. et al. Position independent and copy-number-related expression of the bovine neonatal Fc receptor α-chain in transgenic mice carrying a 102 kb BAC genomic fragment. Transgenic Res 16, 613–627 (2007). https://doi.org/10.1007/s11248-007-9108-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-007-9108-9

Keywords

Navigation