Skip to main content
Log in

Mixed Convection in Water Near the Density Extremum Along a Vertical Plate with Sinusoidal Surface Temperature Variation Embedded in a Porous Medium

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

A steady laminar boundary layer flowing along a vertical plate immersed in a Darcy–Brinkman porous medium saturated with water at 4°C is studied. The plate temperature varies sinusoidally along the plate between 0 and 8°C where the density of water varies parabolically and is almost symmetrical at about 4°C. Except for the existence of the buoyancy force, it is assumed that either the plate moves upwards or the ambient water moves upwards (moving stream). The results are obtained with the direct numerical solution of the boundary layer equations taking into account the temperature dependence of water thermophysical properties (ρ, μ and c p). Results are presented for the wall temperature gradient and the wall shear stress along the plate for free convection and mixed convection. Temperature and velocity profiles are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

Amplitude

c p :

Specific heat under constant pressure

d :

Half wavelength

g :

Gravitational acceleration

k :

Thermal conductivity

K b :

Mean bulk modulus of water

K :

Porous medium permeability

p :

Pressure

s :

Salinity

T :

Temperature

u :

Vertical velocity

v :

Horizontal velocity

V :

Specific volume of water

x :

Vertical coordinate

y :

Horizontal coordinate

μ :

Dynamic viscosity

ν :

Kinematic viscosity

ρ :

Density

τ :

Shear stress

∞:

Ambient

m:

Mean

w:

Wall

References

  • Blasius H.: Grenzschichten in Flussigkeiten mit kleiner Reibung. Z. Math. Phys. 56, 1–37 (1908)

    Google Scholar 

  • Fofonoff N.P.: Physical properties of seawater: a new salinity scale and equation of state for seawater. J. Geophys. Res. 90(C2), 3332–3342 (1985)

    Article  Google Scholar 

  • Holzbecher E.: Numerical studies on thermal convection in cold groundwater. Int. J. Heat Mass Transf. 40, 605–612 (1997)

    Article  Google Scholar 

  • Hooman K., Gurgenci H.: Effects of temperature-dependent viscosity on Benard convection in a porous medium using a non-Darcy model. Int. J. Heat Mass Transf. 51, 1139–1149 (2008a)

    Article  Google Scholar 

  • Hooman K., Gurgenci H.: Heatline visualization of natural convection in a porous cavity occupied by a fluid with temperature-dependent viscosity. J. Heat Transf. 130, 012501 (2008b)

    Article  Google Scholar 

  • Jian L., Ingham D.B., Pop I.: Natural convection from a vertical flat plate with a surface temperature oscillation. Int. J. Heat Mass Transf. 44, 2311–2322 (2001)

    Article  Google Scholar 

  • Kakac S., Yener Y.: Convective Heat Transfer, 2nd edn. CRC Press, Boca Raton (1995)

    Google Scholar 

  • Kandaswamy P., Eswaramurthi M.: Density maximum effect on buoyancy-driven convection of water in a porous cavity with variable side wall temperatures. Int. J. Heat Mass Transf. 51, 1955–1961 (2008)

    Article  Google Scholar 

  • Kao T.T.: Locally nonsimilar solution for laminar free convection adjacent to a vertical wall. ASME J. Heat Transf. 98, 321–322 (1976)

    Google Scholar 

  • Kaviany M.: Principles of Convective Heat Transfer, 2nd edn. Springer, New York (2001)

    Google Scholar 

  • Kukulka D.J., Gebhart B., Mollendorf J.C.: Thermodynamic and transport properties of pure and saline water. Adv. Heat Transf. 18, 325–363 (1987)

    Google Scholar 

  • Ling S.C., Nazar R., Pop I., Merkin J.H.: Steady mixed convection boundary-layer flow over a vertical flat surface in a porous medium filled with water at 4°C: variable surface heat flux. Transp. Porous Med. 70, 307–321 (2007)

    Article  Google Scholar 

  • Malkovsky V.I., Pek A.A.: Conditions for the onset of thermal convection of a homogeneous fluid in a vertical fault. Petrology 5, 381–387 (1997)

    Google Scholar 

  • Malkovsky V.I., Pek A.A.: Onset of thermal convection of a single-phase fluid in an open vertical fault. Izvestiya Phys. Solid Earth 40, 672–679 (2004)

    Google Scholar 

  • Na T.Y.: Numerical solution of natural convection flow past a non-isothermal vertical flat plate. Appl. Sci. Res. 33, 519–543 (1978)

    Google Scholar 

  • Nield, D.A., Bejan, A.: Convection in Porous Media, 3rd edn. Springer (2006)

  • Ostrach, S.: An analysis of laminar free convection flow and heat transfer about a flat plate parallel to the direction of the generating body force. NASA Technical Report 1111 (1953)

  • Pantokratoras A.: Laminar free-convection over a vertical plate with uniform blowing or suction in water with variable physical properties. Int. J. Heat Mass Transf. 45, 963–977 (2002)

    Article  Google Scholar 

  • Pantokratoras A.: Laminar natural convection in water near the density extremum along a vertical plate with sinusoidal surface temperature variation. Acta Mech. 172, 211–218 (2004a)

    Article  Google Scholar 

  • Pantokratoras A.: Laminar assisting mixed convection heat transfer from a vertical isothermal plate to water with variable physical properties. Heat Mass Transf. 40, 581–585 (2004b)

    Article  Google Scholar 

  • Patankar S.V., Spalding D.B.: Heat and Mass Transfer in Boundary Layers. Intertext, London (1970)

    Google Scholar 

  • Patankar S.V.: Numerical Heat Transfer and Fluid Flow. McGraw-Hill Book Company, New York (1980)

    Google Scholar 

  • Pop I., Gorla R.S.R., Rashidi M.: The effect of variable viscosity on flow and heat transfer to a continuous moving flat plate. Int. J. Eng. Sci. 30, 1–6 (1992)

    Article  Google Scholar 

  • Rees D.A.S.: The effect of streamwise surface temperature variations on vertical free convection. Int. J. Heat Mass Transfer 42, 2455–2464 (1999)

    Article  Google Scholar 

  • Saeid N.H.: Maximum density effects on natural convection in a porous cavity under thermal non-equilibrium condition. Acta Mech. 188, 55–68 (2007)

    Article  Google Scholar 

  • Sakiadis B.C.: Boundary layer behavior on continuous solid surfaces: the boundary layer on a continuous flat surface. AIChE J. 7, 221–225 (1961)

    Article  Google Scholar 

  • Schlichting H., Gersten K.: Boundary Layer Theory, 9th edn. Springer, Berlin (2003)

    Google Scholar 

  • Schmidt E., Beckmann W., Pohlhausen E.: Das Temperatur- und Geschwindigkeitsfeld von einer Warme abgebenden, senkrechten Platte bei naturlicher Konvektion. Forsch. Arb. Ing-Wes. 1, 391–404 (1930)

    Google Scholar 

  • Sparrow E.M., Gregg J.L.: Similar solutions for free convection from a nonisothermal vertical plate. Trans. Am. Soc. Mech. Eng. 80, 379–386 (1958)

    Google Scholar 

  • White F.: Viscous Fluid Flow, 2nd edn. McGraw-Hill, New York (1991)

    Google Scholar 

  • White F.: Viscous Fluid Flow, 3rd edn. McGraw-Hill, New York (2006)

    Google Scholar 

  • Yang J., Jeng D.R., DeWitt K.J.: Laminar free convection from a vertical plate with nonuniform surface conditions. Numer. Heat Transfer 5, 165–184 (1982)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asterios Pantokratoras.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pantokratoras, A. Mixed Convection in Water Near the Density Extremum Along a Vertical Plate with Sinusoidal Surface Temperature Variation Embedded in a Porous Medium. Transp Porous Med 76, 309–325 (2009). https://doi.org/10.1007/s11242-008-9248-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-008-9248-2

Keywords

Navigation