Skip to main content
Log in

Quantum Computing and Information Extraction for Dynamical Quantum Systems

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We discuss the simulation of complex dynamical systems on a quantum computer. We show that a quantum computer can be used to efficiently extract relevant physical information. It is possible to simulate the dynamical localization of classical chaos and extract the localization length with quadratic speed up with respect to any known classical computation. We can also compute with algebraic speed up the diffusion coefficient and the diffusion exponent, both in the regimes of Brownian and anomalous diffusion. Finally, we show that it is possible to extract the fidelity of the quantum motion, which measures the stability of the system under perturbations, with exponential speed up. The so-called quantum sawtooth map model is used as a test bench to illustrate these results.

PACS: 03.67.Lx, 05.45.Mt

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. P. Feynman, Int. J. Theor. Phys. 21, 467 (1982).

    Google Scholar 

  2. S. Lloyd, Science 273, 1073 (1996).

    Google Scholar 

  3. G. Ortiz, J. E. Gubernatis, E. Knill, and R. Laflamme, Phys. Rev. A 64, 022319 (2001).

    Google Scholar 

  4. R. Schack, Phys. Rev. A 57, 1634 (1998).

    Google Scholar 

  5. B. Georgeot and D. L. Shepelyansky, Phys. Rev. Lett. 86, 2890 (2001).

    Google Scholar 

  6. G. Benenti, G. Casati, S. Montangero, and D. L. Shepelyansky, Phys. Rev. Lett. 87, 227901 (2001).

    Google Scholar 

  7. G. Benenti, G. Casati, S. Montangero, and D. L. Shepelyansky, Phys. Rev. A 67, 052312 (2003).

    Google Scholar 

  8. I. Dana, N. W. Murray, and I. C. Percival, Phys. Rev. Lett. 62, 233 (1989).

    Google Scholar 

  9. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000).

    Google Scholar 

  10. G. Casati, B. V. Chirikov, J. Ford, and F. M. Izrailev, Lecture Notes Phys. 93, 334 (1979); for a review see, e.g., F.M. Izrailev, Phys. Rep. 196, 299 (1990).

    Google Scholar 

  11. S. Fishman, D. R. Grempel, and R. E. Prange, Phys. Rev. Lett. 49, 509 (1982).

    Google Scholar 

  12. P. M. Koch and K. A. H. van Leeuwen, Phys. Rep. 255, 289 (1995), and references therein.

    Google Scholar 

  13. F. L. Moore, J. C. Robinson, C. F. Barucha, B. Sundaram, and M. G. Raizen, Phys. Rev. Lett. 75, 4598 (1995); H. Ammann, R. Gray, I. Shvarchuck, and N. Christensen, ibid. 80, 4111 (1998); D. A. Steck, W. H. Oskay, and M. G. Raizen, ibid. 88, 120406 (2002).

    Google Scholar 

  14. A. D. Mirlin, Y. V. Fyodorov, F.-M. Dittes, J. Quezada, and T. H. Seligman, Phys. Rev.E 54, 3221 (1996).

    Google Scholar 

  15. B. V. Chirikov, F. M. Izrailev, and D.L. Shepelyansky, Sov. Sci. Rev. C 2, 209 (1981).

    Google Scholar 

  16. Y. S. Weinstein, S. Lloyd, J. Emerson, and D. G. Cory Phys. Rev. Lett. 89, 157902 (2002).

    Google Scholar 

  17. L. M. K. Vandersypen, M. Steffen, G. Breyta, C. S. Yannoni, M. H. Sherwood, and I. L. Chuang, Nature 414, 883 (2001).

    Google Scholar 

  18. S. Gulde, M. Riebe, G. P. T. Lancaster, C. Becher, J. Eschner, H. H¨affner, F. Schmidt-Kaler, I. L. Chuang, and R. Blatt, Nature 421, 48 (2003).

    Google Scholar 

  19. A. Peres, Phys. Rev. A 30, 1610 (1984).

    Google Scholar 

  20. R. A. Jalabert and H. M. Pastawski, Phys. Rev. Lett. 86, 2490 (2001).

    Google Scholar 

  21. Ph. Jacquod, P. G. Silvestrov, and C. W. J. Beenakker, Phys. Rev. E 64, 055203(R) (2001).

  22. N. R. Cerruti and S. Tomsovic, Phys. Rev. Lett. 88, 054103 (2002).

    Google Scholar 

  23. G. Benenti and G. Casati, Phys. Rev. E 65, 066205 (2002).

  24. T. Prosen and M. ? Znidari?c, J. Phys. A 35, 1455 (2002).

    Google Scholar 

  25. J. Emerson, Y. S. Weinstein, S. Lloyd, and D. Cory, Phys. Rev. Lett. 89, 284102 (2002).

    Google Scholar 

  26. F. M. Cucchietti, D. A. R. Dalvit, J. P. Paz, and W. H. Zurek, Phys. Rev. Lett. 91, 210403 (2003).

    Google Scholar 

  27. S. A. Gardiner, J. I. Cirac, and P. Zoller, Phys. Rev. Lett. 79, 4790 (1997).

    Google Scholar 

  28. C. Miquel, J. P. Paz, M. Saraceno, E. Knill, R. Laflamme, and C. Negrevergne, Nature 418, 59 (2002).

    Google Scholar 

  29. E. Ott, T. M. Antonsen, Jr., and J. D. Hanson, Phys. Rev. Lett. 53, 2187 (1984).

    Google Scholar 

  30. P. H. Song and D. L. Shepelyansky, Phys. Rev. Lett. 86, 2162 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benenti, G., Casati, G. & Montangero, S. Quantum Computing and Information Extraction for Dynamical Quantum Systems. Quantum Information Processing 3, 273–293 (2004). https://doi.org/10.1007/s11128-004-0415-2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-004-0415-2

Navigation