Skip to main content

Advertisement

Log in

Geographic variation in tree growth and wood density of Guazuma crinita Mart. in the Peruvian Amazon

  • Published:
New Forests Aims and scope Submit manuscript

Abstract

Guazuma crinita Mart. is a fast-growing timber tree in the Peruvian Amazon. A trial of 11 Peruvian provenances was established in three planting zones. Tree growth at 6, 12, 18 and 30 months and wood density at 32 months were analyzed across and within zones. Zones accounted for more variation than provenances. Density varied significantly due to provenances in the analysis across zones, whereas growth exhibited strong provenance by zone interactions. The local provenance grew well and produced relatively dense wood in all zones. The relative magnitude of variation due to provenances depended on the planting zone. Density was greater in the lower than in the upper stem. Density increased with longitude from the more humid to the drier part of the sample region. In general, correlations indicated that larger trees had lower density and a larger difference in density between the lower and upper stem, but the strength of these relationships depended on the provenance and zone. Results suggest that fast-growing provenances can be selected at an early age without significantly reducing wood density. The local provenance is recommended for reforestation pending future research demonstrating the superiority of foreign provenances. Some practical implications for tree-improvement programs are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alegre JC, Weber JC, Bandy DE (1998) The potential of Inga species for improved woody fallows and multistrata agroforests in the Peruvian Amazon Basin. In: Pennington TD, Fernandes ECM (eds) The genus Inga - utilization. The Royal Botanic Gardens, Kew, London, UK, pp 87–100

    Google Scholar 

  • Alegre JC, Smyth J, Weber JC, Bandy DE (1999) Long-term evaluation of a prototype multistrata system in the humid tropics of Peru. In: Jimenez F, Beer J (eds) Proceedings of an international symposium on multistrata agroforestry systems with perennial crops. IUFRO Research group SI15 Agroforestry, Tropical Agricultural Research and Training Center (CATIE), Turrialba, Costa Rica, pp 90–93

  • Arnold RJ, Johnson IG, Owen JV (2004) Genetic variation in growth, stem straightness and wood properties of Eucalyptus dunnii trials in northern New South Wales. For Gen 11:1–12

    Article  CAS  Google Scholar 

  • ASTM (1997) Standard test methods for specific gravity of wood and wood-base materials. ASTM D2395-93. In: Annual book of ASTM Standards 4.10. American Society for Testing and Materials, Philadelphia, PA, USA, pp 348–355

  • Barajas-Morales J (1987) Wood specific gravity in species from two tropical forests in Mexico. IAWA Bull 8:143–148

    Google Scholar 

  • Barton D (1994) Indigenous agroforestry in Latin America: a blueprint for sustainable agriculture. NRI Socio-Economic Series No. 6. Natural Resources Institute, Chatham, UK, 24 p

  • Bauch J, Dünisch O (2000) Comparison of growth dynamics and wood characteristics of plantation-grown and primary forest Carapa guianensis in Central Amazonia. IAWA J 21:321–333

    Google Scholar 

  • Bawa KS, Seidler R (1998) Natural forest management and conservation of biodiversity in tropical forests. Conserv Biol 12:46–55

    Article  Google Scholar 

  • Bawa KS, Ashton PS, Nor SM (1990) Reproductive ecology of tropical forest plants: management issues. In: Bawa KS, Hadley M (eds) Reproductive ecology of tropical forest plants. UNESCO, Paris, France, pp 3–13

    Google Scholar 

  • Cornelius JP, Mesén F (1997) Provenance and family variation in growth rate, stem straightness, and foliar mineral concentration in Vochysia guatemalensis. Can J For Res 27:1103–1109

    Article  Google Scholar 

  • Cornelius J, Mesén F, Corea E, Henson M (1996) Variation in growth and form of Alnus acuminata Kunth. grown in Costa Rica. Silvae Genet 45:24–30

    Google Scholar 

  • Cornelius J, Clement CR, Weber JC, Sotelo Montes C, van Leeuwen J, Ugarte Guerra LJ, Arévalo López L (2006) The trade-off between genetic gain and conservation in a participatory improvement programme: the case of peach palm (Bactris gasipaes Kunth). For Trees Livelihoods 16:17–34

    Google Scholar 

  • Current D (1995) Economic and institutional analysis of projects promoting on-farm tree planting in Costa Rica. In: Current D, Lutz E, Sherr SJ (eds) Costs, benefits and farmer adoption of agroforestry: project experience in Central America and the Caribbean. World Bank Environment Paper No. 14. The World Bank, Washington, DC, USA, pp 45–80

  • Denevan WM, Padoch C (1987) Swidden-fallow agroforestry in the Peruvian Amazon. New York Botanical Gardens, New York, NY, USA, 107 p

    Google Scholar 

  • Detienne P, Chanson B (1996) L’éventail de la densité du bois des feuillus–comparaison entre différentes régions du monde. Bois Forêts Tropiques 250:19–29

    Google Scholar 

  • Dvorak WS, Uruena H, Moreno LA, Goforth H (1998) Provenance and family variation in Sterculia apetala in Colombia. For Ecol Manage 111:127–135

    Article  Google Scholar 

  • Encarnación F (1983) Nomenclatura de las Especies Forestales Comunes en el Perú. Proyecto PNUD/FAO/PER/81/002 Fortalecimiento de los Programas de Desarrollo Forestal en la Selva Central, Documento de Trabajo No. 7, Lima, Peru, 149 p

  • Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics. Addison Wesley Longman Limited, Edinburgh, UK, 484 p

    Google Scholar 

  • FAO. (2007) Bolaina blanca. Available from http://www.fao.org/ag/agl/agll/rla128/inia/inia-p4/inia-p4-10.htm. (Accessed November 2007)

  • Hamrick JL, Godt MJ, Sherman Broyles SL (1992) Factors influencing levels of genetic diversity in woody plant species. New For 6:95–124

    Google Scholar 

  • Hernández RE, Restrepo G (1995) Natural variation in wood properties of Alnus acuminata H.B.K. grown in Colombia. Wood Fiber Sci 27:41–48

    Google Scholar 

  • Hodge GR, Dvorak WS, Urueña H, Rosales L (2002) Growth, provenance effects and genetic variation of Bombacopsis quinata in field tests in Venezuela and Colombia. For Ecol Manage 158:273–289

    Article  Google Scholar 

  • Kalliola R, Puhakka M, Danjoy W (eds) (1993) Amazonía Peruana – Vegetación Húmeda Tropical en el Llano Subandino. Proyecto Amazonía Universidad de Turku, Oficina Nacional de Evaluación de Recursos Naturales, Lima, Peru, 265 p

    Google Scholar 

  • Khasa PD, Li P, Vallée G, Magnussen S, Bousquet J (1995) Early evaluation of Racosperma auriculiforme and R. mangium provenance trials on four sites in Zaire. For Ecol Manage 78:99–113

    Article  Google Scholar 

  • Labarta RA, Weber JC (1998) Valorización económica de bienes tangibles de cinco especies arbóreas agroforestales en la Cuenca Amazónica Peruana. Rev Forestal Centroam 23:12–21

    Google Scholar 

  • Ledig FT (1992) Human impacts on genetic diversity in forest ecosystems. Oikos 63:87–108

    Article  Google Scholar 

  • MacDonald AC, Borralho NMG, Potts BM (1997) Genetic variation for growth and wood density in Eucalyptus globulus ssp. globulus in Tasmania (Australia). Silvae Genet 46:236–241

    Google Scholar 

  • Miranda I, Almeida MH, Pereira H (2001) Provenance and site variation of wood density in Eucalyptus globulus Labill. at harvest age and its relation to a non-destructive early assessment For Ecol Manage 149:235–240

    Article  Google Scholar 

  • Montagnini F, Mendelsohn RO (1997) Managing forest fallows: improving the economics of swidden agriculture. Ambio 26:118–123

    Google Scholar 

  • Morgenstern EK (1996) Geographic variation in forest trees – genetic basis and application of knowledge in silviculture. UBC Press. Vancouver, Canada, 209 p

    Google Scholar 

  • Mosbrugger V (1990) The tree habit in land plants. Lecture Notes in Earth Sciences, Springer-Verlag, Berlin, Germany, 28 p

    Google Scholar 

  • Niklas KJ (1997) Size- and age-dependent variation in the properties of sap- and heartwood in Black Locust (Robinia pseudoacacia L.). Ann Bot 79:473–478

    Article  Google Scholar 

  • Niklas KJ, Spatz H-C (2000) Wind-induced stresses in cherry trees: evidence against the hypothesis of constant stress levels. Trees 14:230–237

    Article  Google Scholar 

  • O’Neill GA, Dawson IK, Sotelo Montes C, Guarino L, Current D, Guariguata M, Weber JC (2001) Strategies for genetic conservation of trees in the Peruvian Amazon basin. Biodivers Conserv 10:837–850

    Article  Google Scholar 

  • Panshin AJ, de Zeeuw C (1980) Textbook of wood technology. McGraw-Hill Book Company, New York, NY, USA, 722 p

    Google Scholar 

  • Parolin P, Ferreira LV (1998) Are there differences in specific wood gravities between trees in várzea and igapó (Central Amazonia). Ecotropica 4:25–32

    Google Scholar 

  • Portillo Z (1994) Sustainable farming in the Peruvian Amazon. IDRC Rep 22:21–23

    Google Scholar 

  • Raymond CA, Muneri A (2001) Nondestructive sampling of Eucalyptus globulus and E. nitens for wood properties. I. Basic density. Wood Sci Technol 35:27–39

    Article  CAS  Google Scholar 

  • Rochon C (2004) Croissance et densité du bois de sept provenances de Guazuma crinita Mart. Dans le bassin de l’amazonie péruvienne. M.Sc. Thesis. Departement des Sciences du Bois et de la Forêt, Faculté de Foresterie et Géomatique, Université Laval, Québec, Canada, 109 p

  • Rochon C, Margolis HA, Weber JC (2007) Genetic variation in growth of Guazuma crinita (Mart.) trees at an early age in the Peruvian Amazon. For Ecol Manage 243:291–298

    Article  Google Scholar 

  • Rodríguez Rojas M, Sibille Martina AM (1996) Manual de identificación de especies forestales de la subregión andina. Instituto Nacional de Investigación Agraria (INIA), Organización Internacional de las Maderas Tropicales, Lima, Perú, 489 p

    Google Scholar 

  • SAS Institute Inc (2004) SAS/STAT 9.1 user’s guide. SAS Institute Inc., Cary, 5121 p

    Google Scholar 

  • Scherr SJ, Current D (1997) What makes agroforestry profitable for farmers? Evidence from Central America and the Caribbean. Agroforest Today 9:10–15

    Google Scholar 

  • Simons AJ, MacQueen DJ, Stewart JL (1994) Strategic concepts in the domestication of non-industrial trees. In: Leakey RB, Newton AC (eds) Tropical trees: the potential for domestication and the rebuilding of forest resources. HMSO, London, UK, pp 91–102

    Google Scholar 

  • Sotelo Montes C, Weber JC (1997) Priorización de especies arbóreas para sistemas agroforestales en la selva baja del Perú. Agroforest Amér 4:12–17

    Google Scholar 

  • Sotelo Montes C, Vidaurre H, Weber JC (2003) Variation in stem-growth and branch-wood traits among provenances of Calycophyllum spruceanum Benth. from the Peruvian Amazon. New For 26:1–16

    Google Scholar 

  • Sotelo Montes C, Hernández RE, Beaulieu J, Weber JC (2006) Genetic variation and correlations between growth and wood density of Calycophyllum spruceanum Benth. at an early age in the Peruvian Amazon. Silvae Genet 55:217–228

    Google Scholar 

  • Sotelo Montes C, Beaulieu J, Hernández RE (2007a) Genetic variation in wood shrinkage, and its correlations with tree growth and wood density of Calycophyllum spruceanum at an early age in the Peruvian Amazon. Can J For Res 37:966–976

    Article  Google Scholar 

  • Sotelo Montes C, Beaulieu J, Hernández RE (2007b) Genetic variation in wood mechanical properties of Calycophyllum spruceanum at an early age in the Peruvian Amazon. Wood Fiber Sci 39:578–590

    Google Scholar 

  • Stearns SC (1989) The evolutionary significance of phenotypic plasticity. Biol Sci 39:436–445

    Google Scholar 

  • Stern RD, Coe R, Allan EF, Dale IC (2004) Good statistical practices for natural resources research. CABI Publishing, Wallingford, 408 p

    Google Scholar 

  • Stewart JL, Allison GE, Simons AJ (1996) Gliricidia sepium – genetic resources for farmers. Tropical Forestry Papers #33. Oxford Forestry Institute, Department of Plant Sciences, University of Oxford, Oxford, 125 p

  • Toledo E, Rincón C (1996) Utilización industrial de nuevas especies forestales en el Perú. Cámara Nacional Forestal, Instituto Nacional de Recursos Naturales, Organización Internacional de las Maderas Tropicales, Lima, Perú, 240 p

    Google Scholar 

  • Tsoumis GT (1991) Science and technology of wood: structure, properties, utilization. Van Nostrand Reinhold, New York, USA, 400 p

    Google Scholar 

  • Valdivia H, Sotelo Montes C (1993) Posibilidad de utilizar la madera rolliza de bolaina blanca (Guazuma crinita Mart) como material de construcción. Rev Forest Perú 20:87–93

    Google Scholar 

  • Weber JC, Sotelo Montes C, Vidaurre H, Dawson IK, Simons AJ (2001) Participatory domestication of agroforestry trees: an example from the Peruvian Amazon. Dev Pract 11:425–433

    Article  Google Scholar 

  • Weber JC, Sotelo Montes C (2005) Variation and correlations among stem growth and wood traits of Calycophyllum spruceanum Benth. from the Peruvian Amazon. Silvae Genet 54:31–41

    Google Scholar 

  • White D, Arca M, Alegre J, Yanggen D, Labarta R, Weber JC, Sotelo Montes C, Vidaurre H (2005) The Peruvian Amazon: development imperatives and challenges. In: Palm CA, Vosti SA, Sanchez PA, Ericksen PJ (eds) Slash and burn agriculture: the search for alternatives. Columbia University Press, New York, pp 332–354

    Google Scholar 

  • Wiemann MC, Williamson GB (2002) Geographic variation in wood specific gravity: effects of latitude, temperature, and precipitation. Wood Fiber Sci 34:96–107

    CAS  Google Scholar 

  • Woodcock DW, Dos Santos G, Reynel C (2000) Wood characteristics of Amazon forest types. IAWA J 21:277–292

    Google Scholar 

  • Zhang SY (1995) Effect of growth rate on wood specific gravity and selected mechanical properties in individual species from distinct wood categories. Wood Sci Technol 29:451–465

    Article  CAS  Google Scholar 

  • Zobel BJ, van Buijtenen JP (1989) Wood variation – its causes and control. Springer-Verlag, Berlin, 363 p

    Google Scholar 

  • Zobel BJ, Jett JB (1995) Genetics of wood production. Springer-Verlag, Berlin, 337 p

    Google Scholar 

  • Zobel BJ, Sprague JR (1998) Juvenile wood in forest trees. Springer-Verlag, Berlin, 300 p

    Google Scholar 

Download references

Acknowledgements

This research was supported by grants to the World Agroforestry Centre from the Inter-American Development Bank; the Government of Spain; the Governments of Netherlands and Norway as part of the CGIAR Global Initiative for Alternatives to Slash and Burn; the Department for International Development of the United Kingdom; and Winrock International as part of the USAID Alternative Development Program. The authors sincerely thank the farmers and technicians who worked on this project; Nancy Mandel (U.S.D.A. Forest Service) for statistical advice; and three anonymous reviewers for their useful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John C. Weber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weber, J.C., Sotelo Montes, C. Geographic variation in tree growth and wood density of Guazuma crinita Mart. in the Peruvian Amazon. New Forests 36, 29–52 (2008). https://doi.org/10.1007/s11056-007-9080-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11056-007-9080-5

Keywords

Navigation