Skip to main content

Advertisement

Log in

Toward Verification of the Riemann Hypothesis: Application of the Li Criterion

  • Published:
Mathematical Physics, Analysis and Geometry Aims and scope Submit manuscript

Abstract

We substantially apply the Li criterion for the Riemann hypothesis to hold. Based upon a series representation for the sequence {λk}, which are certain logarithmic derivatives of the Riemann xi function evaluated at unity, we determine new bounds for relevant Riemann zeta function sums and the sequence itself. We find that the Riemann hypothesis holds if certain conjectured properties of a sequence ηj are valid. The constants ηj enter the Laurent expansion of the logarithmic derivative of the zeta function about s=1 and appear to have remarkable characteristics. On our conjecture, not only does the Riemann hypothesis follow, but an inequality governing the values λn and inequalities for the sums of reciprocal powers of the nontrivial zeros of the zeta function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz, M. and Stegun, I. A.: Handbook of Mathematical Functions, National Bureau of Standards, Washington, 1964.

    Google Scholar 

  2. Andrews, G. E., Askey, R. and Roy, R.: Special Functions, Cambridge University Press, Cambridge, 1999.

    Google Scholar 

  3. Backlund, R. J.: Über die Nullstellen der Riemannschen Zetafunktion, Acta Math. 41 (1918), 345–375.

    Google Scholar 

  4. Bailey, W. N.: Generalized Hypergeometric Series, Cambridge University Press, Cambridge, 1935.

    Google Scholar 

  5. Berndt, B. C.: On the Hurwitz zeta function, Rocky Mountain J. Math. 2 (1972), 151–157.

    Google Scholar 

  6. Biane, P., Pitman, J. and Yor, M.: Probability laws related to the Jacobi theta and Riemann zeta functions and Brownian excursions, Bull. Amer. Math. Soc. 38 (2001), 435–465.

    Article  Google Scholar 

  7. Bombieri, E. and Lagarias, J. C.: Complements to Li's criterion for the Riemann hypothesis, J. Number Theory 77 (1999), 274–287.

    Article  Google Scholar 

  8. Briggs, W. E.: Some constants associated with the Riemann zeta-function, Michigan Math. J. 3 (1955), 117– 121.

    Article  Google Scholar 

  9. Bump, D.: Automorphic Forms and Representations, Cambridge University Press, Cambridge, 1997.

    Google Scholar 

  10. Clark, W. E. and Ismail, M. E. H.: Inequalities involving gamma and psi functions, Anal. Appl. 1 (2003), 129–140, http://www.math.usf.edu/~eclark

    Article  Google Scholar 

  11. Coffey, M. W.: On some log-cosine integrals related to ζ(2), ζ(3), and ζ(6), J. Comput. Appl. Math. 159 (2003), 205–215.

    Article  Google Scholar 

  12. Coffey, M. W.: Relations and positivity results for derivatives of the Riemann ξ function, J. Comput. Appl. Math. 166 (2004), 525–534.

    Article  Google Scholar 

  13. Coffey, M. W.: New results concerning power series expansions of the Riemann xi function and the Li/Keiper constants, Preprint, 2004.

  14. Coffey, M. W.: Polygamma theory, the Li/Keiper constants, and validity of the Riemann hypothesis, Preprint, 2005.

  15. Davenport, H.: Multiplicative Number Theory, Springer, New York, 2000.

    Google Scholar 

  16. Edwards, H. M.: Riemann's Zeta Function, Academic Press, New York, 1974.

    Google Scholar 

  17. Elizalde, E.: An asymptotic expansion for the first derivative of the generalized Riemann zeta function, Math. Comp. 47 (1986), 347–350.

    Google Scholar 

  18. Flajolet, P. and Sedgewick, R.: Mellin transforms and asymptotics: Finite differences and Rice's integrals, Theoret. Comput. Sci. 144 (1995), 101–124.

    Article  Google Scholar 

  19. Gourdon, X.: The 1013 first zeros of the Riemann zeta function and zeros computation at very large height, Preprint, 2004.

  20. Gradshteyn, I. S. and Ryzhik, I. M.: Tables of Integrals, Series, and Products, Academic Press, New York, 1980.

    Google Scholar 

  21. Graham, R. L., Knuth, D. E. and Patashnik, O.: Concrete Mathematics, 2nd edn, Addison-Wesley, Englewood Cliffs, 1994.

    Google Scholar 

  22. Hardy, G. H.: Note on Dr. Vacca's series for γ, Quart. J. Pure Appl. Math. 43 (1912), 215–216.

    Google Scholar 

  23. Hua, L. K.: Introduction to Number Theory, Springer, 1982.

  24. Israilov, M. I.: On the Laurent Decomposition of Riemann's zeta function, Dokl. Akad. Nauk SSSR (Russian) 12 (1979), 9.

    Google Scholar 

  25. Israilov, M. I.: Trudy Mat. Inst. Steklova 158 (1981), 98–104.

    Google Scholar 

  26. Ivić, A.: The Riemann Zeta-Function, Wiley, 1985.

  27. Ivić, A.: The Laurent coefficients of certain Dirichlet series, Publ. Inst. Math. (Beograd) 53 (1993), 23–36. In Equation (1.7), (log x)x should be replaced with (log x)k and on p. 25 “comparing with (1.15)” should be replaced with “comparing with (1.5)”.

    Google Scholar 

  28. Karatsuba, A. A. and Voronin, S. M.: The Riemann Zeta-Function, Walter de Gruyter, New York, 1992.

    Google Scholar 

  29. Kluyver, J. C.: On certain series of Mr. Hardy, Quart. J. Pure Appl. Math. 50 (1927), 185–192.

    Google Scholar 

  30. Knuth, D. E.: The Art of Computer Programming, Vol. 3, Addison-Wesley, Englewood Cliffs, 1973.

    Google Scholar 

  31. Lehmer, D. H.: The sum of like powers of the zeros of the Riemann zeta function, Math. Comput. 50 (1988), 265–273.

    Google Scholar 

  32. Li, X.-J.: The positivity of a sequence of numbers and the Riemann hypothesis, J. Number Theory 65 (1997), 325–333.

    Article  Google Scholar 

  33. Li, X.-J.: A formula for the Dedekind ξ-function of an imaginary quadratic field, J. Math. Anal. Appl. 260 (2001), 404–420.

    Article  Google Scholar 

  34. Li, X.-J.: Explicit formulas for Dirichlet and Hecke L-functions, Illinois J. Math. 48 (2004), 491–503.

    Google Scholar 

  35. Luke, Y. L.: The Special Functions and Their Approximations, Academic Press, New York, 1969.

    Google Scholar 

  36. Maślanka, K.: Effective method of computing Li's coefficients and their properties, submitted to Experimental Math. (2004), http://nac.oa.uj.edu.pl/~maslanka

  37. Mestre, J.-F.: Formules explicites et minorations de conducteurs de variétés algébriques, Compositio Math. 58 (1986), 209–232.

    Google Scholar 

  38. Mitrović, D.: The signs of some constants associated with the Riemann zeta function, Michigan Math. J. 9 (1962), 395–397.

    Article  Google Scholar 

  39. Nan-Yue, Z. and Williams, K. S.: Some results on the generalized Stieltjes constants, Analysis 14 (1994), 147–162. In addition to the typographical errors pointed out in Appendix C, the first term on the right side of Equation (6.2) should read (log na)/a, and in both Equations (6.5) and (6.11), Pn should appear in place of P1. On p. 148 in Eq. (1.4), fn(x) should be replaced by fn′(x). On p. 157 of this reference, (7.2) should be replaced with (7.1) in the second line of text from the bottom, and on p. 158 (7.2) should be replaced with (1.9) in the third line of text.

    Google Scholar 

  40. Neukirch, J.: Algebraic Number Theory, Springer, 1999.

  41. Odlyzko, A. M.: On the distribution of spacings between zeros of the zeta function, Math. Comp. 48 (1987), 273–308; http://www.dtc.umn.edu/ odlyzko/

    Google Scholar 

  42. Odlyzko, A. M.: Bounds for discriminants and related estimates for class numbers, regulators and zeros of zeta functions: A survey of recent results, Sém. Théor. Nombres Bordeaux g (1989), 1–15.

    Google Scholar 

  43. Omar, S.: Localization of the first zero of the Dedekind zeta function, Math. Comp. 70 (2001), 1607–1616.

    Article  Google Scholar 

  44. Rao, K. S., Berghe, G. V. and Krattenthaler, C.: An entry of Ramanujan on hypergeometric series in his notebooks, J. Comput. Appl. Math. 173 (2005), 239–246.

    Google Scholar 

  45. Riemann, B.: Über die Anzahl der Primzahlen unter einer gegebenen Grösse, Monatsh. Preuss. Akad. Wiss. 671 (1859–1860).

  46. Titchmarsh, E. C.: The Theory of the Riemann Zeta-Function, 2nd edn, Oxford University Press, Oxford, 1986.

    Google Scholar 

  47. Voros, A.: A sharpening of Li's criterion for the Riemann hypothesis, arXiv:math.NT/0404213, 2004.

  48. Weil, A.: Basic Number Theory, Springer, New York, 1967.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark W. Coffey.

Additional information

Mathematics Subject Classification (2000)

11M26.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coffey, M.W. Toward Verification of the Riemann Hypothesis: Application of the Li Criterion. Math Phys Anal Geom 8, 211–255 (2005). https://doi.org/10.1007/s11040-005-7584-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11040-005-7584-9

Keywords

Navigation