Skip to main content
Log in

Pollination control technologies for hybrid breeding

  • review
  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Efforts in hybrid breeding have made this technology one of the main factors contributing to the substantial global rise in agricultural output over the last few decades. For hybrid breeding, an efficient pollination control system is necessary to avoid the unwanted self-pollination or sib-pollination of the female parental line. This review will provide a historical overview of pollination control systems and their use in hybrid crop breeding. We outline the prerequisites for commercial hybrid breeding and summarize the most important non-biological and biological technologies. Our main focus is on hybrid systems that are based on genetically engineered plants. We describe their suitability for pollination control, propagation of the male-sterile crossing partner, fertility restoration and mixed planting. Additionally, we report on the latest findings in the development of inducible sterility systems and various technologies that enable pollination control via metabolic engineering. We discuss the pros and cons of the different pollination control strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aarts MG, Hodge R, Kalantidis K, Florack D, Wilson ZA, Mulligan BJ, Stiekema WJ, Scott R, Pereira A (1997) The Arabidopsis MALE STERILITY 2 protein shares similarity with reductases in elongation/condensation complexes. Plant J 12:615–623

    PubMed  CAS  Google Scholar 

  • Adugna A, Nanda GS, Singh K, Bains NS (2004) A comparison of cytoplasmic and chemically-induced male sterility systems for hybrid seed production in wheat (Triticum aestivum L.). Euphytica 135:297–304

    Google Scholar 

  • Albertsen MC, Howard J, Maddock S (1999) Male sterility inducement in plants by high level avidin expression. Patent WO99/04023. Pioneer Hi-Bred Int., Des Moines, IA (US)

  • Allen E, Gilbertson LA, Houmerd NM, Huarg S, Ivashuta SI, Robert JK (2007) Methods for producing hybrid seed. Patent WO/2007/047016 Monsanto Company, MO (US)

  • Bayer M, Hess D (2005) Restoring full pollen fertility in transgenic male-sterile tobacco (Nicotiana tabacum L.) by Cre-mediated site-specific recombination. Mol Breed 15:193–203

    CAS  Google Scholar 

  • Beal WJ (1880) Indian corn. Rept Michigan State Board Agr 19:279–289

    Google Scholar 

  • Blackmore S, Wortley AH, Skvarla JJ, Rowley JR (2007) Pollen wall development in flowering plants. New Phytol 174:483–498

    PubMed  CAS  Google Scholar 

  • Boavida LC, Becker JD, Feijo JA (2005) The making of gametes in higher plants. Int J Dev Biol 49:595–614

    PubMed  CAS  Google Scholar 

  • Bruce WB, Edmeades GO, Barker TC (2002) Molecular and physiological approaches to maize improvement for drought tolerance. J Exp Bot 53(366):13–25

    PubMed  CAS  Google Scholar 

  • Budar F, Pelletier G (2001) Male sterility in plants: occurrence, determinism, significance and use. C R Acad Sci III 324:543–550

    PubMed  CAS  Google Scholar 

  • Burbulis IE, Iacobucci M, Shirley BW (1996) A null mutation in the first enzyme of flavonoid biosynthesis does not affect male fertility in Arabidopsis. Plant Cell 8:1013–1025

    PubMed  CAS  Google Scholar 

  • Burgess DG, Ralston EJ, Hanson WG, Heckert M, Ho M, Jenq T, Palys JM, Tang K, Gutterson N (2002) A novel, two-component system for cell lethality and its use in engineering nuclear male-sterility in plants. Plant J 31:113–125

    PubMed  CAS  Google Scholar 

  • Chase CD, Gabay-Laughnan S (2004) Cytoplasmic male sterility and fertility restoration by nuclear genes. Springer, Dordrecht

    Google Scholar 

  • Chase CD, Ribarits A, Heberle-Bors E (2010) Male sterility. Springer, Berlin

    Google Scholar 

  • Cheng SH, Zhuang JY, Fan YY, Du JH, Cao LY (2007) Progress in research and development on hybrid rice: a super-domesticate in China. Ann Bot 100:959–966

    PubMed  Google Scholar 

  • Cho HJ, Kim S, Kim M, Kim BD (2001) Production of transgenic male sterile tobacco plants with the cDNA encoding a ribosome inactivating protein in Dianthus sinensis L. Mol Cells 11:326–333

    PubMed  CAS  Google Scholar 

  • Cisar G, Cooper D (2002) Hybrid wheat. In: Curtis BC, Rajaram S, Gomez Macpherson H (eds) Bread wheat: improvement and production. Food and Agriculture Organization, Rome, pp 157–174

    Google Scholar 

  • Coe EH, McCormick SM, Modena SA (1981) White pollen in maize. J Hered 72:318–320

    Google Scholar 

  • Conner TW, Fabbri BJ, Huang J (2002) Methods for translational repression of gene expression in plants. Patent US0062499. Monsanto Company, MO (US)

  • Custers JB, Oldenhof MT, Schrauwen JA, Cordewener JH, Wullems GJ, van Lookeren Campagne MM (1997) Analysis of microspore-specific promoters in transgenic tobacco. Plant Mol Biol 35:689–699

    PubMed  CAS  Google Scholar 

  • Czako M, Jang JC, Herr JM Jr, Marton L (1992) Differential manifestation of seed mortality induced by seed-specific expression of the gene for diphtheria toxin A chain in Arabidopsis and tobacco. Mol Gen Genet 235:33–40

    PubMed  CAS  Google Scholar 

  • Darwin C (1876) The effects of cross and self-fertilisation in the vegetable kingdom. Murray, London

    Google Scholar 

  • Davey MR, Anthony P, Power JB, Lowe KC (2005) Plant protoplasts: status and biotechnological perspectives. Biotechnol Adv 23:131–171

    PubMed  CAS  Google Scholar 

  • de Block M, Debrouwer D, Moens T (1997) The development of a nuclear male sterility system in wheat. Expression of the barnase gene under the control of tapetum specific promoters. Theor Appl Genet 95:125–131

    Google Scholar 

  • de Both G (1995) Seedlink™ technology. In: Murphy DM (ed) 9th international rapeseed congress, Cambridge, pp 1–6

  • de Nettancourt D (2001) Incompatibility and incongruity in wild and cultivated plants. Springer, Berlin

    Google Scholar 

  • de Vries (2000) Climate changes leads to unstable agriculture. Trends Plant Sci 5:367

    Google Scholar 

  • Dirks R, Trinks K, Uijtewaal B, Bartsch K, Peeters R, Hofgen R, Pohlenz H-D (2001) Process for generating male sterile plants. Patent US6262339. Hoechst, Schering Agrevo GmbH, Berlin, Germany

  • Dotson SB, Lanahan MB, Smith AG, Kishore GM (1996) A phosphonate monoester hydrolase from Burkholderia caryophilli PG2982 is useful as a conditional lethal gene in plants. Plant J 10:383–392

    PubMed  CAS  Google Scholar 

  • Driscoll CJ (1972) XYZ system of producing hybrid wheat. Crop Sci 12:516–517

    Google Scholar 

  • Duvick DN (1999) Heterosis: feeding people and protecting natural resources. Crop Science Society of America/Soil Science Society of America, Madison

    Google Scholar 

  • Duvick DN (2005) The contribution of breeding to yield advances in maize (Zea mays L.). Elsevier Academic Press, San Diego

    Google Scholar 

  • Dwivedi S, Perotti E, Ortiz R (2008) Towards molecular breeding of reproductive traits in cereal crops. Plant Biotechnol J 6:529–559

    PubMed  CAS  Google Scholar 

  • Engelke T, Hirsche J, Roitsch T (2010a) Metabolically engineered male sterility in rapeseed (Brassica napus L.). Theor Appl Genet. doi:10.1007/s00122-010-1432-4

  • Engelke T, Hirsche J, Roitsch T (2010b) Anther-specific carbohydrate supply and restoration of metabolically engineered male sterility. J Exp Bot 61:2693–2706

    PubMed  CAS  Google Scholar 

  • Fabijanski S, Arinson P (1995) Binary cryptocytotoxic method of hybrid seed production. Patent US5426041. Pioneer Hi-Bred International, Inc., Des Moines, IA (US)

  • Fischer R, Budde I, Hain R (1997) Stilbene synthase gene expression causes changes in flower colour and male sterility in tobacco. Plant J 11:489–498

    CAS  Google Scholar 

  • Fischer S, Melchinger AE, Korzun V, Wilde P, Schmiedchen B, Mohring J, Piepho HP, Dhillon BS, Wurschum T, Reif JC (2009) Molecular marker assisted broadening of the Central European heterotic groups in rye with Eastern European germplasm. Theor Appl Genet 120:291–299

    Google Scholar 

  • Fladung M (1990) Transformation of diploid and tetraploid potato clones with the rol C gene of Agrobacterium rhizogenes and characterization of transgenic plants. Plant Breed 104:295–304

    Google Scholar 

  • Garcia-Sogo B, Pineda B, Castelblanque L, Anton T, Medina M, Roque E, Torresi C, Beltran JP, Moreno V, Canas LA (2010) Efficient transformation of Kalanchoe blossfeldiana and production of male-sterile plants by engineered anther ablation. Plant Cell Rep 29:61–77

    PubMed  CAS  Google Scholar 

  • Gasser CS (1991) Molecular studies on the differentiation of floral organs. Annu Rev Plant Physiol Plant Mol Biol 1991:621–649

    Google Scholar 

  • Geiger HH, Miedaner T (1999) Hybrid rye and heterosis. In: Coors JG, Pandey S (eds) Genetics and exploitation of heterosis in crops. Crop Sci Soc America, Madison, pp 439–450

    Google Scholar 

  • Geiger HH, Schnell FW (1970) Cytoplasmatic male sterility in rye (Secale cereale L.). Crop Sci 35:27–38

    Google Scholar 

  • Gidoni D, Bar M, Gilboa N (2001) FLP/FRT-mediated restoration of normal phenotypes and clonal sectors formation in rolC transgenic tobacco. Transgenic Res 10:317–328

    PubMed  CAS  Google Scholar 

  • Gils M, Marillonnet S, Werner S, Grutzner R, Giritch A, Engler C, Schachschneider R, Klimyuk V, Gleba Y (2008) A novel hybrid seed system for plants. Plant Biotechnol J 6:226–235

    PubMed  CAS  Google Scholar 

  • Goetz M, Godt DE, Guivarch A, Kahmann U, Chriqui D, Roitsch T (2001) Induction of male sterility in plants by metabolic engineering of the carbohydrate supply. Proc Natl Acad Sci USA 98:6522–6527

    PubMed  CAS  Google Scholar 

  • Goldberg RB, Beals TP, Sanders PM (1993) Anther development: basic principles and practical applications. Plant Cell 5:1217–1229

    PubMed  CAS  Google Scholar 

  • Gomez MD, Beltran JP, Canas LA (2004) The pea END1 promoter drives anther-specific gene expression in different plant species. Planta 219:967–981

    PubMed  CAS  Google Scholar 

  • Goring DR, Rothstein SJ (1992) The S-locus receptor kinase gene in a self-incompatible Brassica napus line encodes a functional serine/threonine kinase. Plant Cell 4:1273–1281

    PubMed  CAS  Google Scholar 

  • Hagemann R (2004) Cytoplasmic male sterility and fertility restoration by nuclear genes. Springer, Dordrecht

    Google Scholar 

  • Hanson MR, Bentolila S (2004) Interactions of mitochondrial and nuclear genes that affect male gametophyte development. Plant Cell 16:154–169

    Google Scholar 

  • Hanson MR, Conde MF (1985) Functioning and variation of cytoplasmic genomes: lessons from cytoplasmic-nuclear interactions affecting male fertility in plants. Int Rev Cyt 94:213–267

    CAS  Google Scholar 

  • Hartley RW (1989) Barnase and barstar: two small proteins to fold and fit together. Trends Biochem Sci 14:450–454

    PubMed  CAS  Google Scholar 

  • Hatakeyama K, Ishiguro S, Okada K, Takasaki T, Hinata K (2003) Antisense inhibition of a nuclear gene, BrDAD1, in Brassica causes male sterility that is restorable with jasmonic acid treatment. Mol Breed 11:325–336

    CAS  Google Scholar 

  • Havey MJ (2004) The use of cytoplasmic male sterility for hybrid seed production. Springer, Dordrecht

    Google Scholar 

  • He YQ, Yang J, Xu CG, Zhang ZG, Zhang Q (1999) Genetic bases of instability of male sterility and fertility reversibility in photoperiod-sensitive genic male-sterile rice. Theor Appl Genet 99:683–693

    CAS  Google Scholar 

  • Hernould M, Suharsono S, Litvak S, Araya A, Mouras A (1993) Male-sterility induction in transgenic tobacco plants with an unedited atp9 mitochondrial gene from wheat. Proc Natl Acad Sci USA 90:2370–2374

    PubMed  CAS  Google Scholar 

  • Hernould M, Zabaleta E, Suharsono S, Carde JP, Litvak S, Araya A, Mouras A (1998) Impairment of tapetum and mitochondria in engineered male-sterile tobacco plants. Plant Mol Biol 36:499–508

    PubMed  CAS  Google Scholar 

  • Heslop-Harrison J (1968) Pollen wall development. Science 161:230–237

    PubMed  CAS  Google Scholar 

  • Higginson T, Li SF, Parish RW (2003) AtMYB103 regulates tapetum and trichome development in Arabidopsis thaliana. Plant J 35:177–192

    PubMed  CAS  Google Scholar 

  • Hirsche J, Engelke T, Voller D, Gotz M, Roitsch T (2009) Interspecies compatibility of the anther specific cell wall invertase promoters from Arabidopsis and tobacco for generating male sterile plants. Theor Appl Genet 118:235–245

    PubMed  CAS  Google Scholar 

  • Hofig KP, Moller R, Donaldson L, Putterill J, Walter C (2006) Towards male sterility in Pinus radiata—a stilbene synthase approach to genetically engineer nuclear male sterility. Plant Biotechnol J 4:333–343

    PubMed  CAS  Google Scholar 

  • Honys D, Oh SA, Renak D, Donders M, Solcova B, Johnson JA, Boudova R, Twell D (2006) Identification of microspore-active promoters that allow targeted manipulation of gene expression at early stages of microgametogenesis in Arabidopsis. BMC Plant Biol 6:31

    PubMed  Google Scholar 

  • Hood EE, Witcher DR, Maddock S, Meyer T, Baszczynski C, Bailey M, Flynn P, Register J, Marshall L, Bond D, Kulisek E, Kusnadi A, Evangelista R, Nikolov Z, Wooge C, Mehigh RJ, Hernan R, Kappel WK, Ritland D, Li CP, Howard JA (1997) Commercial production of avidin from transgenic maize: characterization of transformant, production, processing, extraction and purification. Mol Breed 291–306

  • Horn R (2006) Recombination: cytoplasmic male sterility and fertility restoration in higher plants. Springer, Berlin

    Google Scholar 

  • Huang S, Cerny RE, Qi Y, Bhat D, Aydt CM, Hanson DD, Malloy KP, Ness LA (2003) Transgenic studies on the involvement of cytokinin and gibberellin in male development. Plant Physiol 131:1270–1282

    PubMed  CAS  Google Scholar 

  • Ishiguro S, Kawai-Oda A, Ueda J, Nishida I, Okada K (2001) The DEFECTIVE IN ANTHER DEHISCIENCE gene encodes a novel phospholipase A1 catalyzing the initial step of jasmonic acid biosynthesis, which synchronizes pollen maturation, anther dehiscence, and flower opening in Arabidopsis. Plant Cell 13:2191–2209

    PubMed  CAS  Google Scholar 

  • Izhar S (2005) Method of producing a male sterile plant by exogenic allelism. Patent US6852911. Fertiseed Ltd. (Sitrya, IR)

  • Izhar S, Frankel F (1971) Mechanism of male sterility in Petunia: the relationship between pH, callase activity in the anthers, and the breakdown of the microsporogenesis. Theor Appl Genet 41:104–108

    Google Scholar 

  • Jagannath A, Bandyopadhyay P, Arumugam N, Gupta V, Burma PK, Pental D (2001) The use of a Spacer DNA fragment insulates the tissue-specific expression of a cytotoxic gene (barnase) and allows high-frequency generation of transgenic male sterile lines in Brassica juncea L. Mol Breed 8:11–23

    CAS  Google Scholar 

  • Jung KH, Han MJ, Lee YS, Kim YW, Hwang I, Kim MJ, Kim YK, Nahm BH, An G (2005) Rice Undeveloped Tapetum1 is a major regulator of early tapetum development. Plant Cell 17:2705–2722

    PubMed  CAS  Google Scholar 

  • Jung KH, Han MJ, Lee DY, Lee YS, Schreiber L, Franke R, Faust A, Yephremov A, Saedler H, Kim YW, Hwang I, An G (2006) Wax-deficient anther1 is involved in cuticle and wax production in rice anther walls and is required for pollen development. Plant Cell 18:3015–3032

    PubMed  CAS  Google Scholar 

  • Kalaitzandonakes N, Alston JM, Bradford KJ (2007) Compliance costs for regulatory approval of new biotech crops. Nat Biotechnol 25:509–511

    PubMed  CAS  Google Scholar 

  • Kamps TL, Chase CD (1997) RFLP mapping of the maize gametophytic restorer-of-fertility locus (rf3) and aberrant pollen transmission of the nonrestoring rf3 allele. Theor Appl Genet 95:525–531

    CAS  Google Scholar 

  • Kaothien-Nakayama P, Isogai A, Takayama S (2010) Self-incompatibility systems in flowering plants. Springer, Berlin

    Google Scholar 

  • Kaul MLH (1988) Male sterility in higher plants. Springer, Berlin

    Google Scholar 

  • Kaul MLH (1998) Male sterility: classification and concept. Narosa Publishing House, New Delhi

    Google Scholar 

  • Kawanabe T, Ariizumi T, Kawai-Yamada M, Uchimiya H, Toriyama K (2006) Abolition of the tapetum suicide program ruins microsporogenesis. Plant Cell Physiol 47:784–787

    PubMed  CAS  Google Scholar 

  • Kempe K, Rubtsova M, Gils M (2009) Intein-mediated protein assembly in transgenic wheat: production of active barnase and acetolactate synthase from split genes. Plant Biotechnol J 7:283–297

    PubMed  CAS  Google Scholar 

  • Kim SS, Jung JY, Jeong SK, Lee DS, Chen LJ, Suh HS (2007) Use of herbicide-resistant genic male sterility in hybrid rice seed production. Euphytica 156:297–303

    CAS  Google Scholar 

  • Kimura Y, Shimada A, Nagai T (1994) Effects of glutamine synthetase inhibitors on rice sterility. Biosci Biotech Biochem 58:669–673

    CAS  Google Scholar 

  • Kishitani S, Yomoda A, Konno N, Tanaka Y (1993) Involvement of phenylalanine ammonia-lyase in the development of pollen in broccoli (Brassica oleracea L.). Sex Plant Reprod 6:244–248

    Google Scholar 

  • Knight ME, Jepson I, Daly A, Bayliss MW (1999) Hybrid seed production. Patent WO9942598

  • Koltunow AM, Truettner J, Cox KH, Wallroth M, Goldberg RB (1990) Different temporal and spatial gene expression patterns occur during anther development. Plant Cell 2:1201–1224

    PubMed  CAS  Google Scholar 

  • Koornneef M, van der Veen JH (1980) Induction and analysis of gibberellin sensitive mutants in Arabidopsis thaliana (L.). Theor Appl Genet 58:257–263

    Google Scholar 

  • Kriete G, Niehaus K, Perlick AM, Puhler A, Broer I (1996) Male sterility in transgenic tobacco plants induced by tapetum-specific deacetylation of the externally applied non-toxic compound N-acetyl-L-phosphinothricin. Plant J 9:809–818

    PubMed  CAS  Google Scholar 

  • Ku S, Yoon H, Suh HS, Chung YY (2003) Male-sterility of thermosensitive genic male-sterile rice is associated with premature programmed cell death of the tapetum. Planta 217:559–565

    PubMed  CAS  Google Scholar 

  • Laughnan JR, Gabay SJ (1973) Mutations leading to nuclear restoration of fertility in S male-sterile cytoplasm in maize. Theor Appl Genet 43:109–116

    Google Scholar 

  • Laughnan JR, Gabay-Laughnan S (1983) Cytoplasmic male sterility in maize. Annu Rev Genet 17:27–48

    PubMed  CAS  Google Scholar 

  • Lee Y-H, Chung K-H, Kim H-U, Jin Y-M, Kim H-I, Park B-S (2003) Induction of male sterile cabbage using a tapetum-specific promoter from Brassica campestris L. ssp. pekinensis. Plant Cell Rep 22:268–273

    PubMed  CAS  Google Scholar 

  • Levings CS (1990) The Texas cytoplasm of maize: cytoplasmic male sterility and disease susceptibility. Science 250:942–947

    PubMed  CAS  Google Scholar 

  • Li N, Zhang DS, Liu HS, Yin CS, Li XX, Liang WQ, Yuan Z, Xu B, Chu HW, Wang J, Wen TQ, Huang H, Luo D, Ma H, Zhang DB (2006) The rice tapetum degeneration retardation gene is required for tapetum degradation and anther development. Plant Cell 18:2999–3014

    PubMed  CAS  Google Scholar 

  • Li SF, Iacuone S, Parish RW (2007) Suppression and restoration of male fertility using a transcription factor. Plant Biotechnol J 5:297–312

    PubMed  CAS  Google Scholar 

  • Lu GY, Yang GS, Fu TD (2004) Molecular mapping of a dominant genic male sterility gene Ms in rapeseed (Brassica napus). Plant Breed 123:262–265

    CAS  Google Scholar 

  • Ma H (2005) Molecular genetic analyses of microsporogenesis and microgametogenesis in flowering plants. Annu Rev Plant Biol 56:393–434

    PubMed  CAS  Google Scholar 

  • Maliga P (2004) Plastid transformation in higher plants. Annu Rev Plant Biol 55:289–313

    PubMed  CAS  Google Scholar 

  • Mariani C, De Beuckeleer M, Truettner J, Leemans J, Goldberg RB (1990) Induction of male sterility in plants by a chimaeric ribonuclease gene. Nature 374:737–741

    Google Scholar 

  • Mariani CV, Gossele M, De Beuckeleer M, De Block RB, Goldberg W, De Greef W, Leemans J (1992) A chimaeric ribonuclease-inhibitor gene restores fertility to male sterile plants. Nature 357:384–387

    CAS  Google Scholar 

  • Martin JA, Crawford JH (1951) Several types of sterility in Capsicum frutescens. Proc Am Soc Hort Sci 57:335–338

    Google Scholar 

  • Martín AC, Atienza S, Ramírez M, Barro F, Martín A (2008) Male fertility restoration of wheat in Hordeum chilense cytoplasm is associated with 6HchS chromosome addition. Austr J Agric Res 59:206–213

    Google Scholar 

  • Maruyama K, Kato H, Araki H (1991) Mechanized production of F1 seeds in rice [Oryza sativa] by mixed planting. JARQ 24:243–252

    Google Scholar 

  • Matsuda N, Tsuchiya T, Kishitani S, Tanaka Y, Toriyama K (1996) Partial male sterility in transgenic tobacco carrying antisense and sense PAL cDNA under the control of a tapetum-specific promoter. Plant Cell Phys 37:215–222

    CAS  Google Scholar 

  • McConn M, Browse J (1996) The critical requirement for linolenic acid is pollen development, not photosynthesis, in an Arabidopsis mutant. Plant Cell 8:403–416

    PubMed  CAS  Google Scholar 

  • McCormick S (1993) Male gametophyte development. Plant Cell 5:1265–1275

    PubMed  Google Scholar 

  • Mo Y, Nagel C, Taylor LP (1992) Biochemical complementation of chalcone synthase mutants defines a role for flavonols in functional pollen. Proc Natl Acad Sci USA 89:7213–7217

    PubMed  CAS  Google Scholar 

  • Möhring S, Esch E, Wricke G (1999) Breeding hybrid varieties in winter rapeseed using recessive self-incompatibility. In: 10th international rapeseed congress, Canberra, Australia

  • Mukai Y, Tsunewaki K (1979) Basic studies on hybrid wheat breeding. VIII. A new male sterility-fertility restoration system in common wheat utilizing the cytoplasm of Aegilops kotschyi and Ae. variabilis. Theor Appl Genet 54:153–160

    Google Scholar 

  • Napoli C, Lemieux C, Jorgensen R (1990) Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2:279–289

    PubMed  CAS  Google Scholar 

  • Napoli CA, Fahy D, Wang HY, Taylor LP (1999) White anther: a petunia mutant that abolishes pollen flavonol accumulation, induces male sterility, and is complemented by a chalcone synthase transgene. Plant Physiol 120:615–622

    PubMed  CAS  Google Scholar 

  • Nizampatnam NR, Doodhi H, Kalinati Narasimhan Y, Mulpuri S, Viswanathaswamy DK (2009) Expression of sunflower cytoplasmic male sterility-associated open reading frame, orfH522 induces male sterility in transgenic tobacco plants. Planta 229:987–1001

    PubMed  CAS  Google Scholar 

  • O’Keefe DP, Tepperman JM, Dean C, Leto KJ, Erbes DL, Odell JT (1994) Plant expression of a bacterial cytochrome P450 that catalyzes activation of a sulfonylurea pro-herbicide. Plant Physiol 105:473–482

    PubMed  Google Scholar 

  • Ogura H (1968) Studies on the new male-sterility in Japanese radish with special reference to the utilization of this sterility towards the practical raising of hybrid seeds. Mem Fac Agric Kagoshima Univ 6

  • Paddon CJ, Hartley RW (1986) Cloning, sequencing and transcription of an inactivated copy of Bacillus amyloliquefaciens extracellular ribonuclease (barnase). Gene 40:231–239

    Google Scholar 

  • Park JH, Halitschke R, Kim HB, Baldwin IT, Feldmann KA, Feyereisen R (2002) A knock-out mutation in allene oxide synthase results in male sterility and defective wound signal transduction in Arabidopsis due to a block in jasmonic acid biosynthesis. Plant J 31:1–12

    PubMed  Google Scholar 

  • Parodi PC, de los Angeles Gaju M (2009) Male sterility induced by the chemical hybridizing agent clofencet on wheat, Triticum aestivum and T. turgidum var. durum. Cien Inv Agr 36:267–276

    Google Scholar 

  • Paul W, Hodge R, Smartt S, Draper J, Scott R (1992) The isolation and characterisation of the tapetum-specific Arabidopsis thaliana A9 gene. Plant Mol Biol 19:611–622

    PubMed  CAS  Google Scholar 

  • Pelletier G, Budar F (2007) The molecular biology of cytoplasmically inherited male sterility and prospects for its engineering. Curr Opin Biotechnol 18:121–125

    PubMed  CAS  Google Scholar 

  • Perez-Prat E, van Lookeren Campagne MM (2002) Hybrid seed production and the challenge of propagating male-sterile plants. Trends Plant Sci 7:199–203

    PubMed  CAS  Google Scholar 

  • Piston F, Garcia C, Gdl Vina, Beltran JP, Canas LA, Barro F (2008) The pea PsEND1 promoter drives the expression of GUS in transgenic wheat at the binucleate microspore stage and during pollen tube development. Mol Breed 21:401–405

    CAS  Google Scholar 

  • Proels RK, González MC, Roitsch T (2006) Gibberellin-dependent induction of tomato extracellular invertase Lin7 is required for pollen development. Funct Plant Biol 33:547–554

    CAS  Google Scholar 

  • Rahman MH (2005) Resynthesis of Brassica napus L. for self-incompatibility: self-incompatibility reaction, inheritance and breeding potential. Plant Breed 124:13–19

    Google Scholar 

  • Ribarits A, Mamun AN, Li S, Resch T, Fiers M, Heberle-Bors E, Liu CM, Touraev A (2007) Combination of reversible male sterility and doubled haploid production by targeted inactivation of cytoplasmic glutamine synthetase in developing anthers and pollen. Plant Biotechnol J 5:483–494

    PubMed  CAS  Google Scholar 

  • Roberts JA, Paul W, Craze M (1999) The use of the Arabidopsis ESJ2A Promoter to reduce anther dehiscence and create male sterile plants. Patent WO9913089. Biogemma UK Ltd

  • Roque E, Gomez MD, Ellul P, Wallbraun M, Madueno F, Beltran J, Canas LA (2007) The PsEND1 promoter: a novel tool to produce genetically engineered male-sterile plants by early anther ablation. Plant Cell Rep 26:313–325

    PubMed  CAS  Google Scholar 

  • Ruiz ON, Daniell H (2005) Engineering cytoplasmic male sterility via the chloroplast genome by expression of {beta}-ketothiolase. Plant Physiol 138:1232–1246

    PubMed  CAS  Google Scholar 

  • Sancho J, Fersht AR (1992) Dissection of an enzyme by protein engineering. The N and C-terminal fragments of barnase form a native-like complex with restored enzymic activity. J Mol Biol 224:741–747

    PubMed  CAS  Google Scholar 

  • Sanders PM, Lee PY, Biesgen C, Boone JD, Beals TP, Weiler EW, Goldberg RB (2000) The Arabidopsis DELAYED DEHISCENCE1 gene encodes an enzyme in the jasmonic acid synthesis pathway. Plant Cell 12:1041–1061

    PubMed  CAS  Google Scholar 

  • Sawhney VK, Shukla A (1994) Male sterility in flowering plants: are plant growth substances involved? Am J Bot 81:1640–1647

    Google Scholar 

  • Schilmiller AL, Stout J, Weng JK, Humphreys J, Ruegger MO, Chapple C (2009) Mutations in the cinnamate 4-hydroxylase gene impact metabolism, growth and development in Arabidopsis. Plant J 60:771–782

    PubMed  CAS  Google Scholar 

  • Schmulling T, Schell J, Spena A (1988) Single genes from Agrobacterium rhizogenes influence plant development. EMBO J 7:2621–2629

    PubMed  CAS  Google Scholar 

  • Schmulling T, Rohrig H, Pilz S, Walden R, Schell J (1993) Restoration of fertility by antisense RNA in genetically engineered male sterile tobacco plants. Mol Gen Genet 237:385–394

    PubMed  CAS  Google Scholar 

  • Schnable PS, Wise RP (1998) The molecular basis of cytoplasmic male sterility. Trends Plant Sci 3:175–180

    Google Scholar 

  • Scott R, Hodge R, Paul W, Draper J (1991) The molecular biology of anther differentiation. Plant Sci 80:167–191

    CAS  Google Scholar 

  • Selvaraj G, Wang A, Xia Q, Xie W (2002) Anther-specific TAA1 genes encoding fatty acyl Co-A reductases, and uses thereof. Patent WO/2002/099111

  • Serrano L, Day AG, Fersht AR (1993) Step-wise mutation of barnase to binase. A procedure for engineering increased stability of proteins and an experimental analysis of the evolution of protein stability. J Mol Biol 233:305–312

    PubMed  CAS  Google Scholar 

  • Shi Y, Zhao S, Yao J (2009) Premature tapetum degeneration: a major cause of abortive pollen development in photoperiod sensitive genic male sterility in rice. J Integr Plant Biol 51:774–781

    PubMed  Google Scholar 

  • Shin JS, Jung KW, Yoo KS, Cui MH, Kim YY, Ok SH (2008) Arabidopsis AtLEJ1 gene involved in inhibiting biosynthesis of jasmonic acid and ethylene and method for producing male-sterile plant using the same. Patent WO/2008/007854

  • Shull GH (1952) Beginnings of the heterosis concept. In: Gowen JW (ed) Heterosis. Iowa State College Press, Ames, pp 14–48

    Google Scholar 

  • Singh SP, Pandey T, Srivastava R, Verma PC, Singh PK, Tuli R, Sawant SV (2010) BECLIN1 from Arabidopsis thaliana under the generic control of regulated expression systems, a strategy for developing male sterile plants. Plant Biotechnol J. Epub ahead of print. doi:10.1111/j.1467-7652.2010.00527.x

  • Smith AG, Gasser CS, Budelier KA, Fraley RT (1990) Identificaton and characterization of stamen- and tapetum-specific genes from tomato. Mol Gen Genet 222:9–16

    PubMed  CAS  Google Scholar 

  • Smith CW, Betrán J, Runge ECA (2004) Corn: origin, history, technology, and production. Wiley, New Jersey

    Google Scholar 

  • Snowdon R, Lühs W, Friedt W (2007) Oilseed rape. Genome Map MolBreed Plants 2:55–114

    Google Scholar 

  • Spena A, Estruch JJ, Prinsen E, Nacken W, Van Onckelen H, Sommer H (1992) Anther-specific expression of the rolB gene of Agrobacterium rhizogenes increases IAA content in anthers and alters anther development and whole flower growth. Theor Appl Genet 84:520–527

    Google Scholar 

  • Stintzi A, Browse J (2000) The Arabidopsis male-sterile mutant, opr3, lacks the 12-oxophytodienoic acid reductase required for jasmonate synthesis. Proc Natl Acad Sci USA 97:10625–10630

    PubMed  CAS  Google Scholar 

  • Stuber CW (1994) Heterosis in plant breeding. Plant Breed Rev 12:227–251

    Google Scholar 

  • Takada K, Ishimaru K, Minamisawa K, Kamada H, Enzura H (2005a) Expression of a mutated melon ethylene receptor gene Cm-ETR1/H69A affects stamen development in Nicotiana tabacum. Plant Sci 169:935–942

    CAS  Google Scholar 

  • Takada K, Kamada H, Ezura H (2005b) Production of male sterile transgenic plants. Plant Biotech 22:469–476

    CAS  Google Scholar 

  • Takada K, Ishimaru K, Kamada H, Ezura H (2006) Anther-specific expression of mutated melon ethylene receptor gene Cm-ERS1/H70A affected tapetum degeneration and pollen grain production in transgenic tobacco plants. Plant Cell Rep 25:936–941

    PubMed  CAS  Google Scholar 

  • Takada K, Watanabe S, Sano T, Ma B, Kamada H, Ezura H (2007) Heterologous expression of the mutated melon ethylene receptor gene Cm-ERS1/H70A produces stable sterility in transgenic lettuce (Lactuca sativa). J Plant Physiol 164:514–520

    PubMed  CAS  Google Scholar 

  • Tang HV, Pring DR (2003) Conversion of fertility restoration of the sorghum IS1112C (A3) male-sterile cytoplasm from two genes to one gene. Crop Sci 43:1747–1753

    CAS  Google Scholar 

  • Teng PS (2008) Bioscience entrepreneurship in Asia: creating value with biology. World Scientific Publ Co, Singapore

    Google Scholar 

  • Tsuchiya T, Toriyama K, Yoshikawa M, Ejiri S, Hinata K (1995) Tapetum-specific expression of the gene for an endo-beta-1, 3-glucanase causes male sterility in transgenic tobacco. Plant Cell Physiol 36:487–494

    PubMed  CAS  Google Scholar 

  • Tu ZP, Banga SK (1998) Chemical hybridizing agents. Narosa Publishing House, New Delhi

    Google Scholar 

  • van der Meer IM, Stam ME, van Tunen AJ, Mol JN, Stuitje AR (1992) Antisense inhibition of flavonoid biosynthesis in petunia anthers results in male sterility. Plant Cell 4:253–262

    PubMed  Google Scholar 

  • Van Lookeren Campagne M, Dirks R, Peeters R, Liu C-M, Li S, Heberle-Bros E, Touraev A (2006) Reversible male sterile plants. Patent WO/2006/125678. Nunhems Netherlands BV (NL), Plant Research International (NL), University of Vienna (AT)

  • Virmani S, Sun Z, Mou T, Jauhar Ali A, Mao C (2003) Two-line hybrid rice breeding manual. Los Baños (Philippines): International Rice Research Institute

  • Wang XL, Li XB (2009) The GhACS1 gene encodes an acyl-CoA synthetase which is essential for normal microsporogenesis in early anther development of cotton. Plant J 57:473–486

    PubMed  CAS  Google Scholar 

  • Wang A, Xia Q, Xie W, Dumonceaux T, Zou J, Datla R, Selvaraj G (2002) Male gametophyte development in bread wheat (Triticum aestivum L.): molecular, cellular, and biochemical analyses of a sporophytic contribution to pollen wall ontogeny. Plant J 30:613–623

    PubMed  CAS  Google Scholar 

  • Wang A, Xia Q, Xie W, Datla R, Selvaraj G (2003) The classical Ubisch bodies carry a sporophytically produced structural protein (RAFTIN) that is essential for pollen development. Proc Natl Acad Sci USA 100:14487–14492

    PubMed  CAS  Google Scholar 

  • Wang Y, Xue Y, Li J (2005) Towards molecular breeding and improvement of rice in China. Trends Plant Sci 10:610–614

    PubMed  CAS  Google Scholar 

  • Wilson J, Ross W (1962) Male sterility interaction of Triticum aestivum nucleous and Triticum timopheevii cytoplasm. Wheat Information Service 14:29–30

    Google Scholar 

  • Wilson ZA, Zhang DB (2009) From Arabidopsis to rice: pathways in pollen development. J Exp Bot 60:1479–1492

    PubMed  CAS  Google Scholar 

  • Worrall D, Hird DL, Hodge R, Paul W, Draper J, Scott R (1992) Premature dissolution of the microsporocyte callose wall causes male sterility in transgenic tobacco. Plant Cell 4:759–771

    PubMed  CAS  Google Scholar 

  • Wu HM, Cheung AY (2000) Programmed cell death in plant reproduction. Plant Mol Biol 44:267–281

    PubMed  Google Scholar 

  • Ylstra B, Busscher J, Franken J, Hollman PCH, Mol JNM, Tunen AJV (1994) Flavonols and fertilization in Petunia hybrida: localization and mode of action during pollen tube growth. Plant J 6:201–212

    CAS  Google Scholar 

  • Ylstra B, Muskens M, Van Tunen AJ (1996) Flavonols are not essential for fertilization in Arabidopsis thaliana. Plant Mol Biol 32:1155–1158

    PubMed  CAS  Google Scholar 

  • Zhan X, Wu H, Cheung AY (1996) Nuclear male sterility induced by pollen-specific expression of a ribonuclease. Sex Plant Reprod 9:35–43

    Google Scholar 

  • Zhang ZB, Zhu J, Gao JF, Wang C, Li H, Zhang HQ, Zhang S, Wang DM, Wang QX, Huang H, Xia HJ, Yang ZN (2007) Transcription factor AtMYB103 is required for anther development by regulating tapetum development, callose dissolution and exine formation in Arabidopsis. Plant J 52:528–538

    PubMed  CAS  Google Scholar 

  • Zhang DS, Liang WQ, Yuan Z, Li N, Shi J, Wang J, Liu YM, Yu WJ, Zhang DB (2008) Tapetum degeneration retardation is critical for aliphatic metabolism and gene regulation during rice pollen development. Mol Plant 1:599–610

    PubMed  CAS  Google Scholar 

  • Zhou K, Wang S, Feng Y, Liu Z, Wang G (2006) The 4E-ms system of producing hybrid wheat. Crop Sci 46:250–255

    Google Scholar 

Download references

Acknowledgments

The authors wish to sincerely thank Dr. Günter Welz (Bayer CropScience AG) for critical reading of the manuscript and anonymous reviewers for their helpful comments. We are grateful to Wolf v. Rhade and Dr. Ralf Schachschneider (Nordsaat Saatzucht GmbH, Böhnshausen, Germany) for their continual support. Work in the Laboratory of M. Gils at the IPK Gatersleben was supported with funding from the Bundesministerium für Bildung und Forschung (BMBF; GABI-FUTURE grant 0315043A). Because of the breadth of the subject and limited space available, this review is not exhaustive. We apologize to all those colleagues whose findings we fail to acknowledge.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Gils.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kempe, K., Gils, M. Pollination control technologies for hybrid breeding. Mol Breeding 27, 417–437 (2011). https://doi.org/10.1007/s11032-011-9555-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-011-9555-0

Keywords

Navigation