Skip to main content
Log in

Effect of the epoxy/amine stoichiometry on the properties of carbon nanotube/epoxy composites

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The effect of different amine/epoxy ratios on different properties of an epoxy resin was evaluated. Also, different amounts of carbon nanotubes (CNT) were added in order to analyse which of these two factors is more relevant. Dynamic thermomechanical analysis and flexural tests were carried out. The results obtained for the epoxy resin are in agreement with that reported by several researchers. The glass transition temperature of the resin and composites is maximal for the amine/epoxy stoichiometric ratio, while the highest glassy storage and flexural modulus correspond to the epoxy-rich systems, showing that the most crosslinked network is not the stiffest one. The effect of changing the stoichiometry is more relevant than adding CNT to the epoxy resin used in this work. However, the addition of CNT causes more remarkable changes in the epoxy-rich resin, promoting an increase of the glass transition temperature and the elastic modulus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gojny FH, Wichmann MHG, Fiedler B, Schulte K. Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites—a comparative study. Compos Sci Technol. 2005;65:2300–13.

    Article  CAS  Google Scholar 

  2. Chen X, Wang J, Lin M, Zhong W, Feng T, Chen X, Chen J, Xue F. Mechanical and thermal properties of epoxy nanocomposites reinforced with amino-functionalized multi-walled carbon nanotubes. Mater Sci Eng A. 2008;492:236–42.

    Article  Google Scholar 

  3. Song YS, Youn JR. Influence of dispersion states of carbon nanotubes on physical properties of epoxy nanocomposites. Carbon. 2005;43:1378–85.

    Article  CAS  Google Scholar 

  4. Xie XL, Mai YW, Zhou XP. Dispersion and alignment of carbon nanotubes in polymer matrix: a review. Mater Sci Eng R. 2005;49:89–112.

    Article  Google Scholar 

  5. Chen W, Auad ML, Williams RJJ, Nutt SR. Improving the dispersion and flexural strength of multiwalled carbon nanotubes-stiff epoxy composites through β-hydroxyester surface functionalization coupled with the anionic homopolymerization of the epoxy matrix. Eur Polym J. 2006;42:2765–72.

    Article  CAS  Google Scholar 

  6. Lau KT, Lu M, Lam CK, Cheung HY, Shen FL, Li HL. Thermal and mechanical properties of single-walled carbon nanotube bundle-reinforced epoxy nanocomposites: the role of solvent for nanotube dispersion. Compos Sci Technol. 2005;65:719–25.

    Article  CAS  Google Scholar 

  7. Ci L, Bai J. The reinforcement role of carbon nanotubes in epoxy composites with different matrix stiffness. Compos Sci Technol. 2006;66:599–603.

    Article  CAS  Google Scholar 

  8. Guzmán de Villoria R, Miravete A, Cuartero J, Chiminelli A, Tolosana N. Mechanical properties of SWNT/epoxy composites using two different curing cycles. Composites B. 2006;37:273–7.

    Article  Google Scholar 

  9. Prolongo SG, Gude MR, Ureña A. Improving the flexural and thermomechanical properties of amino-functionalized carbon nanotube/epoxy composites by using a pre-curing treatment. Compos Sci Technol. 2011;71:765–71.

    Article  CAS  Google Scholar 

  10. Prolongo SG, Gude MR, Ureña A. Synthesis and characterisation of epoxy resins reinforced with carbon nanotubes and nanofibers. J Nanosci Nanotechnol. 2009;9:6181–7.

    Article  CAS  Google Scholar 

  11. Shen J, Huang L, Wu L, Hu Y, Ye M. The reinforcement role of different amino-functionalized multi-walled carbon nanotubes in epoxy nanocomposites. Compos Sci Technol. 2007;67:3041–50.

    Article  CAS  Google Scholar 

  12. Prolongo SG, Gude MR, Ureña A. Rheological behaviour of nanoreinforced epoxy adhesives of low electrical resistivity for joining carbon fiber/epoxy laminates. J Adhes Sci Technol. 2010;24:1097–112.

    Article  CAS  Google Scholar 

  13. Calventus Y, Montserrat S, Hutchinson JM. Enthalpy relaxation of non-stoichiometric epoxy-amine resins. Polymer. 2001;42:7081–93.

    Article  CAS  Google Scholar 

  14. Meyer F, Sanz G, Eceiza A, Mondragon I, Mijović J. The effect of stoichiometry and thermal history during cure on structure and properties of epoxy networks. Polymer. 1995;36:1407–14.

    Article  CAS  Google Scholar 

  15. Fernandez-Nograro F, Valea A, Llano-Ponte R, Mondragon I. Dynamic and mechanical properties of DGEBA/poly(propylene oxide) amine based epoxy resins as a function of stoichiometry. Eur Polym J. 1996;32:257–66.

    Article  CAS  Google Scholar 

  16. Vallo CI, Frontini PM, Williams RJJ. The glass transition temperature of nonstoichiometric epoxy-amine networks. J Polym Sci B. 1991;29:1503–11.

    Article  CAS  Google Scholar 

  17. Palmese GR, McCullough RL. Effect of epoxy-amine stoichiometry on cured resin material properties. J Appl Polym Sci. 1992;46:1863–73.

    Article  CAS  Google Scholar 

  18. Morgan RJ, Kong FM, Walkup CN. Structure-property relations of polyethertriamine-cured bisphenol-A-diglycidyl ether epoxies. Polymer. 1984;25:375–86.

    Article  CAS  Google Scholar 

  19. Guerrero P, De la Caba K, Valea A, Corcuera MA, Mondragon I. Influence of cure schedule and stoichiometry on the dynamic mechanical behaviour of tetrafunctional epoxy resins cured with anhydrides. Polymer. 1996;37:2195–200.

    Article  CAS  Google Scholar 

  20. Gupta VB, Brahatheeswara C. Molecular packing and free volume in crosslinked epoxy networks. Polymer. 1991;32:1875–84.

    Article  CAS  Google Scholar 

  21. Jeffrey K, Pethrick RA. Influence of chemical structure on free volume in epoxy resins: a positron annihilation study. Eur Polym J. 1994;30:153–8.

    Article  CAS  Google Scholar 

  22. Prolongo SG, Gude MR, Ureña A. The curing process of epoxy/amino-functionalized MWCNTs: calorimetry, molecular modelling, and electron microscopy. J Nanotechnol 2010; ID 420432.

  23. López J, Rico M, Montero B, Díez J, Ramírez C. Polymer blends based on an epoxy-amine thermoset and a thermoplastic. J Therm Anal Calorim. 2009;95:369–76.

    Article  Google Scholar 

  24. Rico M, López J, Bouza R. Thermal behavior of blends based on a thermoplastic-modified epoxy resin with a crosslinking density variation. J Therm Anal Calorim. 2011;105:599–606.

    Article  CAS  Google Scholar 

  25. Bae J, Jang J, Yoon SH. Cure behavior of the liquid-crystalline epoxy/carbon nanotube system and the effect of surface treatment of carbon fillers on cure reaction. Macromol Chem Phys. 2002;203:2196–204.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support from the Ministerio de Ciencia e Innovación of Spain (Project MAT2010-20724-C02-01) and the Consejería de Educación of Comunidad de Madrid (Programme S2009MAT/1585). María R Gude also thanks Consejería de Educación of Comunidad de Madrid and Fondo Social Europeo for awarding a research contract.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Prolongo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gude, M.R., Prolongo, S.G. & Ureña, A. Effect of the epoxy/amine stoichiometry on the properties of carbon nanotube/epoxy composites. J Therm Anal Calorim 108, 717–723 (2012). https://doi.org/10.1007/s10973-011-2056-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-2056-x

Keywords

Navigation