Skip to main content
Log in

Design of an experimental procedure to assess soil health state

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The design of a rigorous experimental procedure is the basis for any environmental study. In this work, the basic criteria are established for determination of soil health using microcalorimetry as the main technique complemented by the study of physical (temperature, moisture, porosity, hydraulic conductivity, density and plasticity), chemical (pH and C to N ratio) and biological features (most probable number of microorganisms and organic matter content), and also environmental properties in the form of bioclimatic diagrams. The design was elaborated using as a reference a humic eutrophic-Cambisol subjected to afforestation with P. pinaster Aiton situated in Viveiro (Galicia, NW Spain). Main results of this study refer to total heat evolved during the processes (2.65 to 3.81 J g–1), time to reach the maximum of the peak from 16.17 to 19.29 h, and microbial growth rate constant from 0.0732 to 0.1043 h–1. These results change over the year as they are influenced by the action of environmental parameters over soil microbial activity. The results are in close agreement with some others previously reported using different experimental techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B Chardin P Gallice JC Sari M Bruschi (2002) J. Therm. Anal. Cal. 70 475 Occurrence Handle1:CAS:528:DC%2BD38XpsFOltL8%3D Occurrence Handle10.1023/A:1021628608379

    Article  CAS  Google Scholar 

  2. RY Stanier EA Adelberg JL Ingraham et al. (1985) Microbiología Reverté-Repla S. A. Barcelona 262

    Google Scholar 

  3. U Mortensen B Norén I Wadsö (1973) Bull. Ecol. Res. Comm. 17 189

    Google Scholar 

  4. K Ljungholm B Norén R Sköld I Wadsö (1979) Oikos 33 15

    Google Scholar 

  5. K Ljungholm B Norén I Wadsö (1979) Oikos 33 24 Occurrence Handle1:CAS:528:DyaL3cXitFChtw%3D%3D

    CAS  Google Scholar 

  6. I Lamprecht et al. (1980) Biological Microcalorimetry Academic Press London 43

    Google Scholar 

  7. JP Belaich et al. (1980) Biological Microcalorimetry Academic Press New York 1

    Google Scholar 

  8. L Núñez N Barros I Barja (1994) J. Thermal Anal. 41 1379

    Google Scholar 

  9. L Núñez N Barros I Barja (1994) Thermochim. Acta 237 73 Occurrence Handle10.1016/0040-6031(94)85185-9

    Article  Google Scholar 

  10. I Barja L Núñez (1999) Soil Biol. Biochem. 31 441 Occurrence Handle1:CAS:528:DyaK1MXitVOqtr4%3D Occurrence Handle10.1016/S0038-0717(98)00149-7

    Article  CAS  Google Scholar 

  11. L Núñez-Regueira O Núñez-Fernández JA Rodríguez Añón J Proupín Castiñeiras (2002) Thermochim. Acta 394 123 Occurrence Handle10.1016/S0040-6031(02)00245-9

    Article  Google Scholar 

  12. L Núñez-Regueira JA Rodríguez-Añón J Proupín-Castiñeiras O Núñez-Fernández (2005) J. Therm. Anal. Cal. 80 35 Occurrence Handle10.1007/s10973-005-0610-0

    Article  Google Scholar 

  13. L. Núñez-Regueira, J. A. Rodríguez-Añón, J. Proupín-Castiñeiras and O. Núnez-Fernández, Soil Biol. Biochem., (2005) in press.

  14. RG Petersen LD Calvin et al. (1998) Methods of Soil Analysis, Part. 1 Physical and Mineralogical Methods American Society of Agronomy, Inc. and Soil Science Society of America, Inc. Madison-Wisconsin 33

    Google Scholar 

  15. JK Mitchell et al. (1993) Fundamentals of Soil Behaviour John Wiley & Sons, Inc. New York

    Google Scholar 

  16. I Lamprecht et al. (1999) Combustion Calorimetry Elsevier Amsterdam 175

    Google Scholar 

  17. G. W. Thomas, Soil pH and Soil Acidity. In: D. L. Sparks, (Ed.). Methods of Soil Analysis, Part 3 Chemical Methods. American Society of Agronomy, Inc. and Soil Science Society of America, Inc. Madison-Wisconsin 1996, pp. 475–490.

  18. D. K. Cassel and D. R. Nielsen, Field Capacity and Available Water Capacity. In: A. Klute, (Ed.). Methods of Soil Analysis, Part 1 Physical and Mineralogical Methods (2nd edition). American Society of Agronomy, Inc. and Soil Science Society of America, Inc. Madison-Wisconsin 1998, pp. 901–926.

  19. GI Boyoucos (1962) Agronomy J. 54 623

    Google Scholar 

  20. G. W. Gee and J. W. Bauder, Particle-size Analysis. In: A. Klute, (Ed.). Methods of Soil Analysis, Part 1 Physical and Mineralogical Methods (2nd edition). American Society of Agronomy, Inc. and Soil Science Society of America, Inc. Madison-Wisconsin 1998, pp. 383–411.

  21. G. R. Blake and K. H. Hartge, Bulk Density. In: A. Klute, (Ed.). Methods of Soil Analysis, Part 1 Physical and Mineralogical Methods (2nd edition). American Society of Agronomy, Inc. and Soil Science Society of America, Inc. Madison-Wisconsin 1998, pp. 363–375.

  22. G. R. Blake and K. H. Hartge, Particle Density. In: A. Klute, (Ed.). Methods of Soil Analysis, Part 1 Physical andMineralogical Methods (2nd edition). American Society of Agronomy, Inc. and Soil Science Society of America, Inc. Madison-Wisconsin 1998, pp. 377–382.

  23. W. H. Gardner, Water Content. In: A. Klute, (Ed.). Methods of Soil Analysis, Part 1 Physical and Mineralogical Methods (2nd edition). American Society of Agronomy, Inc. and Soil Science Society of America, Inc. Madison-Wisconsin 1998, pp. 493–544.

  24. R. E. Danielson and P. L. Sutherland, Porosity. In: A. Klute, (Ed.). Methods of Soil Analysis, Part 1 Physical and Mineralogical Methods (2nd edition). American Society of Agronomy, Inc. and Soil Science Society of America, Inc. Madison-Wisconsin 1998, pp. 443–461.

  25. I. S. Kaúrichev, Ed. MIR Moscú. 1984. URSS.

  26. A. Klute and C. Dirksen, Hydraulic Conductivity and Diffusivity: Laboratory Methods. In: A. Klute, (Ed.). Methods of Soil Analysis, Part 1 Physical and Mineralogical Methods (2nd edition). American Society of Agronomy, Inc. and Soil Science Society of America, Inc. Madison-Wisconsin 1998, pp. 687–734.

  27. JL Montero de Burgos JL González Rebollar et al. (1973) Diagramas Bioclimáticos Instituto Nacional para la Conservación de la Naturaleza Madrid

    Google Scholar 

  28. Resumo de datos climatolóxicos da rede das estacións do centro de investigacións forestais de Lourizán 1955–1994. Xunta de Galicia-Consellería de Agricultura, Gandería e Montes, Santiago de Compostela 1995.

  29. J Suurkuusk I Wadsö (1982) Chemistry Scripta 20 155 Occurrence Handle1:CAS:528:DyaL3sXktFOgtQ%3D%3D

    CAS  Google Scholar 

  30. T Kawabata H Yamano T Takahashi (1983) Agric. Biol. Chem. 47 1281 Occurrence Handle1:CAS:528:DyaL3sXkvVegtbg%3D

    CAS  Google Scholar 

  31. H Yamano K Takahashi (1983) Agric. Biol. Chem. 47 1493 Occurrence Handle1:CAS:528:DyaL3sXltlylurY%3D

    CAS  Google Scholar 

  32. W Smykatz-Kloss (2002) J. Therm. Anal. Cal. 69 85 Occurrence Handle1:CAS:528:DC%2BD38Xms1eltL0%3D Occurrence Handle10.1023/A:1019933622550

    Article  CAS  Google Scholar 

  33. D Grell E Grell P Bugnon B Dietrich JM Lehn (2004) J. Therm. Anal. Cal. 77 483 Occurrence Handle1:CAS:528:DC%2BD2cXmvFSmtbc%3D Occurrence Handle10.1023/B:JTAN.0000038988.19849.bb

    Article  CAS  Google Scholar 

  34. LD Baver WH Gardner WR Gardner et al. (1991) Soil Physics John Wiley & Sons, Inc. New York 78

    Google Scholar 

  35. V Ivanova V Petkova Y Pelovski (2003) J. Therm. Anal. Cal. 74 387 Occurrence Handle1:CAS:528:DC%2BD3sXpt12itrg%3D Occurrence Handle10.1023/B:JTAN.0000005172.69663.f4

    Article  CAS  Google Scholar 

  36. EB Knapp LF Elliot GS Campbell (1983) Soil Biology Biochemistry 15 455 Occurrence Handle10.1016/0038-0717(83)90011-1

    Article  Google Scholar 

  37. WG Cochran (1950) Biometrics 6 105 Occurrence Handle1:STN:280:Cy%2BD38boslU%3D Occurrence Handle10.2307/3001491

    Article  CAS  Google Scholar 

  38. SAM Critter SS Freitas C Airoldi (2002) Thermochim. Acta 394 145 Occurrence Handle1:CAS:528:DC%2BD38XntF2rsrw%3D Occurrence Handle10.1016/S0040-6031(02)00247-2

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodríguez-Añón J. A..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Núñez-Regueira, L., Proupín-Castiñeiras, J., Rodríguez-Añón, J.A. et al. Design of an experimental procedure to assess soil health state. J Therm Anal Calorim 85, 271–277 (2006). https://doi.org/10.1007/s10973-005-7199-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-005-7199-1

Keywords

Navigation