Skip to main content
Log in

On the design and installation of a Compton–suppressed HPGe spectrometer at the Budapest neutron-induced prompt gamma spectroscopy (NIPS) facility

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

An important aspect of the ongoing upgrade at the Budapest PGAA-NIPS facility has been the design and installation of a second Compton-suppressed gamma spectrometer. The aim was to provide excellent spectroscopic conditions for future position sensitive and large sample prompt gamma activation analysis applications. The optimum geometry of the setup was determined by Monte Carlo calculations with the MCNP-CP code. The suppression factors for various layouts (co-axial, perpendicular), shapes (cylindrical, tapered), and thicknesses were compared at different gamma-ray energies. The optimum configuration, as a trade-off between performance and cost, was selected, purchased, and installed. Several characteristic features of a collimated, Compton-suppressed system could be revealed, which allowed us to achieve a better and cost-effective performance. The calculations were validated with a 14N(n,γ)15N calibration source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Molnár GL (ed) (2004) Handbook of prompt gamma activation analysis with neutron beams. Kluwer Academic Publishers, Dordrecht/Boston/New York

    Google Scholar 

  2. Hunt GJ, O’Riordan MC, Whetmath PDJ (1973) Nucl Instr Methods 156:573

    Article  Google Scholar 

  3. Peerani P, Carbo P, Hrnecek E, Betti M (2002) Nucl Instr Methods A 482:42. doi:10.1016/S0168-9002(01)01677-1

    Article  CAS  Google Scholar 

  4. Szentmiklósi L, Belgya T, Révay ZS, Kis Z (2010) J Radioanal Nucl Chem 286:501. doi:10.1007/s10967-010-0765-4

    Article  Google Scholar 

  5. Michel C, Emling H, Grosse E, Azgui F, Grein H, Wollersheim HJ, Gaardhoje JJ, Herskind B (1986) Nucl Instr Methods A 251:119. doi:10.1016/0168-9002(86)91158-7

    Article  Google Scholar 

  6. Kiang LL, Tsou RH, Li JH, Lin SC, Lo C-Y, Kiang GC, Teng PK (1995) Nucl Instr Methods A 355:434. doi:10.1016/0168-9002(94)01109-5

    Article  CAS  Google Scholar 

  7. Avignone FT III (1980) Nucl Instr Methods 174:555. doi:10.1016/0029-554X(80)91110-6

    Article  CAS  Google Scholar 

  8. Park CS, Sun GM, Choi HD (2003) J Korean Nucl Soc 35:234

    CAS  Google Scholar 

  9. Berlizov AN (2006) MCNP-CP, a correlated particle radiation source extension of a general purpose Monte Carlo N particle transport code. In: Semkov TM, Pommé S, Jerome SM (eds) ACS symposium series 945. American Chemical Society, Washington DC, pp 183–194. doi:10.1021/bk-2007-0945.ch013

    Google Scholar 

  10. J.F.Briesmeister et al. (1997) MCNP—a general Monte Carlo N-particle transport code. Los Alamos National Laboratory Report LA-12625-M

  11. Szentmiklósi L, Berlizov AN (2009) Nucl Instr Methods A 612:122–126. doi:10.1016/j.nima.2009.09.127

    Article  Google Scholar 

  12. Canella L, Kudejova P, Schulze R, Türler A, Jolie J (2011) Nucl Instr Methods A 636:108. doi:10.1016/j.nima.2011.01.126

    Article  CAS  Google Scholar 

  13. Crittin M, Kern J, Schenker J-L (2000) Nucl Instr Methods A 449:221–236. doi:10.1016/S0168-9002(99)01467-9

    Article  CAS  Google Scholar 

  14. Cho H-J, Chung Y-S, Kim Y-J (2005) Nucl. Instr Methods B 229:499. doi:10.1016/j.nimb.2004.12.124

    Article  CAS  Google Scholar 

  15. T. Belgya, Zs Révay, B Fazekas, I Héjja, L Dabolczi, GL Molnár (1997) The new Budapest capture gamma-ray facility. In: GL Molnár, T Belgya, Zs Révay (eds.) Proceedings of 9th International Symposium on Capture Gamma-Ray Spectroscopy and Related Topics, Budapest, Hungary, 8–12 October, Springer Verlag, Budapest, Berlin, Heidelberg, 826–837, ISBN-963-7775-55

  16. Yonezawa Ch, Haji Wood AK, Hoshi M, Ito Y, Tachikawa E (1993) Nucl Instr Methods A 329:207. doi:10.1016/0168-9002(93)90938-E

    Article  Google Scholar 

  17. Mackey EA, Anderson DL, Liposky PJ, Lindstrom RM, Chen-Mayer H, Lamaze GP (2004) Nucl Instr Methods B 226:426. doi:10.1016/j.nimb.2004.05.038

    Article  CAS  Google Scholar 

  18. Paul RL, Lindstrom RM, Brocker C, Mackey EA (2008) J Radioanal Nucl Chem 278:697. doi:10.1007/s10967-008-1507-8

    Article  CAS  Google Scholar 

  19. Scionix Holland BV Dedicated Scintillation Detectors P.O. Box 143 3980 CC Bunnik, The Netherlands

  20. Belgya T (2006) Physical Review C. 74: 024603-1-8

  21. Gencho YR (2006) Dipole-strength distributions below the giant dipole resonance in 92Mo, 98Mo and 100Mo, Ph.D. dissertation, Institut für Kern und Teilchenphysik Fakultät Matematik und Naturwissenschaften, Technische Universität Dresden, Dresden, Fig. 4.2, p 39

Download references

Acknowledgments

The authors acknowledge the financial support of the NAP VENEUS 08 project (Contract No. OMFB-00184/2006) and the technical help of Kálmán Takács. Certain commercial equipment, instruments, software or materials are identified in this paper in order to specify the experimental procedures in adequate detail. This identification does not imply that the equipment or materials identified are necessarily the best available for the purpose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to László Szentmiklósi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szentmiklósi, L., Kis, Z., Belgya, T. et al. On the design and installation of a Compton–suppressed HPGe spectrometer at the Budapest neutron-induced prompt gamma spectroscopy (NIPS) facility. J Radioanal Nucl Chem 298, 1605–1611 (2013). https://doi.org/10.1007/s10967-013-2555-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-013-2555-2

Keywords

Navigation