Skip to main content
Log in

Effect of different peroxide initiators on the reaction extrusion of polypropylene-graft-cardanol and its compatibilization on PP/PC

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Polypropylene-graft-cardanol (CAPP) was prepared by reactive extrusion in the presence of three kinds of initiators: dicumyl peroxide (DCP), benzoyl peroxide (BPO) and di-tert-butyl peroxide (dTBP). The effects of initiator type on grafting degree, melt flow index (MFI), isothermal crystallization and capillary rheological properties were investigated. CAPP with an improved level of grafting and stabilized value of MFI was obtained in the presence of DCP. The cardanol grafted onto polyproplylene (PP) afforded an “impurity” for the formation of a crystallization nucleus and spherulite growth during the crystallization process. On the other hand, the shear stress and viscosity of CAPPs were lower than PP because the cardanol grafted onto PP broadened the distance between the molecules. In particular, the shear stress and viscosity of CAPP using DCP as the initiator was lower than that of CAPP by using BPO or dTBP attributed to the optimum initiation of DCP. The effect of CAPP using DCP as the initiator on the compatibilization of PP and bisphenol-A polycarbonate (PC) was investigated with a mechanical properties test and scanning electron microscopy (SEM). It could be found that the CAPP enhanced the interfacial adhesion between PP/PC and improved the mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Zhang M, Colby RH, Milner ST, Chung TCM, Huang T, deGroot W (2013) Synthesis and characterization of maleic anhydride grafted polypropylene with a well-defined molecular structure. Macromolecules 46:4313–4323

    Article  CAS  Google Scholar 

  2. Li SZ, Xiao MM, Wei DF, Xiao HN, Hu FZ, Zheng AN (2009) The melt grafting preparation and rheological characterization of long chain branching polypropylene. Polymer 50:6121–6128

    Article  CAS  Google Scholar 

  3. Paavol S, Saarinen T, Löfgren B, Pitkänen P (2004) Propylene copolymerization with non-conjugated dienes and α-olefins using supported metallocene catalyst. Polymer 45:2099–2110

    Article  CAS  Google Scholar 

  4. Auhl D, Stange J, Münstedt H, Krause B, Voigt D, Lederer A, Lappan U, Lunkwitz K (2004) Long-chain branched polypropylenes by electron beam irradiation and their rheological properties. Macromolecules 37:9465–9472

    Article  CAS  Google Scholar 

  5. Diop MF, Torkelson JM (2013) Ester functionalization of polypropylene via controlled decomposition of benzoyl peroxide during solid-state shear pulverization. Macromolecules 46:6671–6698

    Article  CAS  Google Scholar 

  6. Zhang W, Yang LL, Chen P, Zhang HJ, Lin W, Wang YX (2013) Preparation of long-chain branching polypropylene and investigation on its foamability. Polym Eng Sci 53:1598–1604

    Article  CAS  Google Scholar 

  7. Li J-L, Xie X-M (2012) Reconsideration on the mechanism of free-radical melt grafting of glycidyl methacrylate on polyolefin. Polymer 53:2197–2204

    Article  CAS  Google Scholar 

  8. Luo W, Liu X, Fu Y (2012) Melt grafting of maleic anhydride onto polypropylene with assistance of α-methylstyrene. Polym Eng Sci 52:814–819

    Article  CAS  Google Scholar 

  9. Badrossamay MR, Sun G (2009) A study of radical graft copolymerization on polypropylene during extrusion using two peroxide initiators. Polym Int 59:155–161

    Google Scholar 

  10. Sirisinha K, Boonkongkaew M (2013) Improved silane grafting of high-density polyethylene in the melt by using a binary initiator and the properties of silane-crosslinked products. J Polym Res 20:120–129

    Article  CAS  Google Scholar 

  11. Azizi H, Ghasemi I, Karrabi M (2008) Controlled-peroxide degradation of polypropylene: rheological properties and prediction of MWD from rheological data. Polym Test 27:548–554

    Article  CAS  Google Scholar 

  12. Chen QH, Xue HY, Lin JH (2010) Preparation of polypropylene-graft-cardanol by reactive extrusion and its composite material with bamboo powder. J Appl Polym Sci 115:1160–1167

    Article  CAS  Google Scholar 

  13. Chen QH, Yin FQ, Zhen LH, Xiao XQ, Lin JH (2013) Crystallization behaviorof polypropylene-graft-cardanol prepared by reactive extrusion. Int Polym Process 1:43–48

    Article  CAS  Google Scholar 

  14. Hassouna F, Raquez J-M, Addiego F, Toniazzo V, Dubois P, Ruch D (2012) New development on plasticized poly(lactide): chemical grafting of citrate on PLA by reactive extrusion. Eur Polym J 48:404–415

    Article  CAS  Google Scholar 

  15. Michell RM, Müller AJ, Boschetti-de-Fierro A, Fierro D, Lison V, Raquez J-M, Dubois P (2012) Novel poly (ester-urethane) s based on polylactide: from reactive extrusion to crystallization and thermal properties. Polymer 53:5657–5665

    Article  CAS  Google Scholar 

  16. Zhao W, Huang Y, Liao X, Yang Q (2013) The molecular structure characteristics of long chain branched polypropylene and its effects on non-isothermal crystallization and mechanical properties. Polymer 54:1455–1462

    Article  CAS  Google Scholar 

  17. Szkudlarek E, Piorkowska E, Boyer SAE, Haudin JM, Gadzinowska K (2013) Nonisothermal shear-induced crystallization of polypropylene-based composite materials with montmorillonite. Eur Polym J 49:2109–2119

    Article  CAS  Google Scholar 

  18. Wu M, Yang GH, Wang M, Wang WZ, Zhang W-D, Feng JC, Liu TX (2008) Nonisothermal crystallization kinetics of ZnO nanorod filled polyamide 11 composites. Mater Chem Phys 109:547–555

    Article  CAS  Google Scholar 

  19. Huang L, Kiyofuji G, Matsumoto J, Fukagawa Y, Gong C, Nojima SH (2012) Isothermal crystallization of poly(β-propiolactone) blocks starting from lamellar microdomain structures of double crystalline poly(β-propiolactone)-block-polyethylene copolymers. Polymer 53:5856–5863

    Article  CAS  Google Scholar 

  20. Ojijo V, Malwela T, Ray SS, Sadiku R (2012) Unique isothermal crystallization phenomenon in the ternary blends of biopolymers polylactide and poly[(butylene succinate)-co-adipate] and nano-clay. Polymer 53:505–518

    Article  CAS  Google Scholar 

  21. Jiang LY, Xiong CD, Jiang LX, Chen DL, Li Q (2013) Effect of n-HA content on the isothermal crystallization, morphology and mechanical property of n-HA/PLGA composites. Mater Res Bull 48:1233–1238

    Article  CAS  Google Scholar 

  22. Chen SY, Zhang YQ, Fang HG, Ding YS, Wang ZG (2013) Can spherulitic growth rate accelerate before impingement for a semicrystalline polymer during the isothermal crystallization process? Cryst Eng Comm 15:5464–5475

    Article  CAS  Google Scholar 

  23. Zhang R-H, Li X-K, Cao G-P, Shi Y-H, Liu H-L, Yuan W-K, Roberts GW (2011) Improved kinetic model of crystallization for isotactic polypropylene induced by supercritical CO2: introducing pressure and temperature dependence into the avrami equation. Ind Eng Chem Res 50:10509–10515

    Article  CAS  Google Scholar 

  24. Cebe P, Hong SD (1986) Crystallization behaviour of poly(ether-ether-ketone). Polymer 27:1183–1192

    Article  CAS  Google Scholar 

  25. Liu Y, Li S-C, Liu H (2013) Melt rheological properties of LLDPE/PP blends compatibilized by cross-linked LLDPE/PP blends (LLDPE-PP). Polym Plast Technol Eng 52:841–846

    Article  CAS  Google Scholar 

  26. Zheng XJ, Zhang J, He JS (2004) Mutual influence of the morphology and capillary rheological properties in nylon/glass-fiber/liquid-crystalline-polymer blends. J Polym Sci B Polym Phys 42:1619–1627

    Article  CAS  Google Scholar 

  27. Liang Y, Jensen RE, Pappas DD, Palmese GR (2011) Toughening vinyl ester networks with polypropylene meso-fibers: interface modification and composite properties. Polymer 52:510–518

    Article  CAS  Google Scholar 

  28. Song PG, Cao ZH, Cai YZ, Zhao LP, Fang ZP, Fu SY (2011) Fabrication of exfoliated graphene-based polypropylene nanocoposites with enhanced mechanical and thermal properties. Polymer 52:4001–4010

    Article  CAS  Google Scholar 

  29. Wang JH, Niu H, Dong JY, Du J, Han CC (2012) Morphology and mechanical properties of polypropylene/poly (propylene-1-octene) in-reactor alloys prepared by Metallocene/Ziegler–Natta hybrid catalyst. Polymer 53:1507–1516

    Article  CAS  Google Scholar 

  30. Kouini B, Serier A (2012) Properties of polypropylene/polyamide nanocomposites prepared by melt processing with a PP-g-MAH compatibilizer. Mater Des 34:313–318

    Article  CAS  Google Scholar 

  31. Pakula T, Koynov K, Boerner H, Huang JY, Lee H, Pietrasik J, Sumerlin B, Matyjaszewsk K (2011) Effect of chain topology on the self-organization and the mechanical properties of poly(n-butyl acrylate)-b-polystyrene block copolymers. Polymer 52:2576–2583

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is subsidized by the National Science Foundation of China (No. 51103024) and Fujian Normal University Foundation for Excellent Young Teachers (No. fjsdky 2012004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinhui Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yin, F., Chen, Q., Lin, J. et al. Effect of different peroxide initiators on the reaction extrusion of polypropylene-graft-cardanol and its compatibilization on PP/PC. J Polym Res 21, 411 (2014). https://doi.org/10.1007/s10965-014-0411-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-014-0411-x

Keywords

Navigation