Skip to main content
Log in

Spectrum and Stabilization in Hyperbolic Problems

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

We study the connection between the stabilization of solutions of a mixed hyperbolic problem and spectral properties of the corresponding elliptic boundary value problem. We consider the first mixed problem for the wave equation in bounded and unbounded domains in ℝn, determine the class of its energy solutions, and represent the solutions in terms of the Bochner–Stieltjes integral. We study how the spectrum of the elliptic operator affects the behavior of local energy of a solution and describe a method which allows us to study the stabilization of solutions with the help of estimates in the spectral parameter for solutions of the stationary problem on the upper half-plane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. D. Lax, Hyperbolic Partial Differential Equations, Courant Lect. Notes, Amer. Math. Soc., New York (2006).

  2. A. V. Filinovskii, “Stabilization and spectrum in wave propagation problems,” in: I. V. Astashova, ed., Qualitative Properties of Solutions of Differential Equations and Associated Questions of Spectral Analysis [in Russian], UNITY-DANA, Moscow (2012), pp. 289–463.

    Google Scholar 

  3. A. V. Filinovskii, “Stabilization of solutions of the external Dirichlet problem for the equation of plate vibrations,” Mat. Zametki, 39, No. 4, 586–596 (1986).

    MathSciNet  Google Scholar 

  4. S. G. Mikhlin, The Problem of Minimum of a Quadratic Functional, Holden-Day, San Francisco (1965).

    MATH  Google Scholar 

  5. A. V. Filinovskii, “Stabilization of solutions of the wave equation in unbounded domains,” Mat. Sb., 187, No. 6, 131–160 (1996).

    Article  MathSciNet  Google Scholar 

  6. T. Kato, Perturbation Theory for Linear Operators, Springer, Berlin (1995).

    Book  MATH  Google Scholar 

  7. C. F. Muckenhoupt, “Almost periodic functions and vibrating systems,” J. Math. Phys., 8, 163–198 (1929).

    Article  MATH  Google Scholar 

  8. S. L. Sobolev, “On almost-periodicity of solutions of the wave equation I, II,” Dokl. Akad. Nauk SSSR, 48, No. 8, 570–573 (1945); Dokl. Akad. Nauk SSSR, 48, No. 9, 646–648 (1945).

  9. F. Riesz and B. Nagy, Leçons D’Analyse Fonctionelle, Akadémiai Kiado, Budapest (1972).

  10. N. Wiener, The Fourier Integral and Certain of Its Applications, Dover (1958).

  11. L. C. Evans, Partial Differential Equations, Amer. Math. Soc., Providence (2010).

  12. L. A. Liusternik and V. J. Sobolev, Elements of Functional Analysis [in Russian], Nauka, Moscow (1965).

  13. D. M. Eidus, “The limit amplitude principle,” Usp. Mat. Nauk, 24, No. 3, 91–156 (1969).

    MATH  Google Scholar 

  14. A. A. Vinnik, “Radiation conditions for domains with infinite boundaries,” Izv. Vyssh. Uchebn. Zaved. Mat., No. 7 (182), 37–45 (1977).

  15. C. S. Morawetz, “The decay for solutions of the exterior initial boundary-value problem for the wave equation,” Commun. Pure Appl. Math., 14, No. 3, 561–568 (1961).

    Article  MathSciNet  MATH  Google Scholar 

  16. E. C. Zachmanoglou, “The decay for solutions of the initial boundary-value problem for the wave equation in unbounded regions,” Arch. Ration. Mech. Anal., 14, No. 4, 315–325 (1963).

    MathSciNet  MATH  Google Scholar 

  17. O. A. Ladyzhenskaya, “On the limit amplitude principle,” Usp. Matem. Nauk, 12, No. 3, 161–164 (1957).

    Google Scholar 

  18. V. P. Mikhailov, “On the limit amplitude principle,” Dokl. Akad. Nauk SSSR, 159, No. 4, 750–752 (1964).

    MathSciNet  Google Scholar 

  19. L. A. Muravei, “Large time asymptotic behavior of solutions of exterior boundary-value problems for the wave equation with two spatial variables,” Mat. Sb., 107, No. 1, 84–133 (1978).

    MathSciNet  Google Scholar 

  20. B. R. Vainberg, Asymptotic Methods in Equations of Mathematical Physics, CRC Press (1989).

  21. Y. M. Chen, “On slow decay of the solution of the initial boundary-value problem for the wave equation in the exterior of a three-dimensional obstacle,” J. Math. Anal. Appl., 15, No. 3, 389–396 (1966).

    Article  MathSciNet  MATH  Google Scholar 

  22. V. M. Favorin, “On t → ∞ behavior of solutions of mixed problems for the 3d wave equation in a cylindrical domain,” Differ. Uravn., 17, No. 2, 354–365 (1981).

    MathSciNet  MATH  Google Scholar 

  23. N. Wiener and R. C. Paley, Fourier Transforms in the Complex Domain, Amer. Math. Soc., New York (1954).

    MATH  Google Scholar 

  24. A. V. Filinovskii, “Hyperbolic equations with growing coefficients in unbounded domains,” Tr. Semin. Petrovskogo, 29, 455–473 (2013).

    Google Scholar 

  25. A. V. Filinovskii, “Stabilization of solutions of the wave equation in domains with noncompact boundaries,” Mat. Sb., 189, No. 8, 141–160 (1998).

    Article  MathSciNet  Google Scholar 

  26. A. V. Filinovskii, “Energy decay of solutions of the first mixed problem for the wave equation in domains with noncompact boundaries,” Mat. Zametki, 67, No. 5, 311–315 (2000).

    Article  MathSciNet  Google Scholar 

  27. A. V. Filinovskii, “Stabilization of solutions of the first mixed problem for the wave equation in domains with noncompact boundaries,” Mat. Sb., 193, No. 9, 107–138 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  28. A. V. Filinovskii, “On the dacay rate of solutions of the wave equation in domains with star-shaped boundaries,” Tr. Semin. Petrovskogo, 26, 391–407 (2007).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Filinovskii.

Additional information

Translated from Trudy Seminara imeni I. G. Petrovskogo, No. 31, pp. 231–256, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filinovskii, A.V. Spectrum and Stabilization in Hyperbolic Problems. J Math Sci 234, 531–547 (2018). https://doi.org/10.1007/s10958-018-4027-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-018-4027-2

Navigation