Skip to main content
Log in

Two-Dimensional SIR Epidemics with Long Range Infection

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We extend a recent study of susceptible-infected-removed epidemic processes with long range infection (referred to as I in the following) from 1-dimensional lattices to lattices in two dimensions. As in I we use hashing to simulate very large lattices for which finite size effects can be neglected, in spite of the assumed power law p(x)∼|x|σ−2 for the probability that a site can infect another site a distance vector x apart. As in I we present detailed results for the critical case, for the supercritical case with σ=2, and for the supercritical case with 0<σ<2. For the latter we verify the stretched exponential growth of the infected cluster with time predicted by M. Biskup. For σ=2 we find generic power laws with σ-dependent exponents in the supercritical phase, but no Kosterlitz-Thouless (KT) like critical point as in 1-d. Instead of diverging exponentially with the distance from the critical point, the correlation length increases with an inverse power, as in an ordinary critical point. Finally we study the dependence of the critical exponents on σ in the regime 0<σ<2, and compare with field theoretic predictions. In particular we discuss in detail whether the critical behavior for σ slightly less than 2 is in the short range universality class, as conjectured recently by F. Linder et al. As in I we also consider a modified version of the model where only some of the contacts are long range, the others being between nearest neighbors. If the number of the latter reaches the percolation threshold, the critical behavior is changed but the supercritical behavior stays qualitatively the same.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

Notes

  1. Lattices with 264 sites are of course also finite, but they are strictly equivalent to infinite ones, if growing clusters never form fake loops which would be absent on infinite lattices. In that sense, all simulations except those in Sect. 5.4 were effectively done on infinite lattices.

  2. Alternatively, we could have plotted these data against 1/L 1/ν, and looked for straight lines. Unfortunately, this would give ν≈2.0, if we keep the value D f =1.707, or it would give D f ≈1.69, if we insist on ν=4/3 or ν=1.42 as suggested by Fig. 28. Both are incompatible with standard percolation and with the scenario proposed in this paper. We take this as a further indication that—even if finite size scaling works well in principle—there are large corrections to scaling.

  3. Notice that one cannot use the huge corrections to scaling seen e.g. in Fig. 25 to argue away the problem. If there were no singularity at σ=2, there would be no reason for any large corrections to scaling.

References

  1. Newman, M.E.J.: Phys. Rev. E 66, 016128 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  2. Janssen, H.-K., Müller, M., Stenull, O.: Phys. Rev. E 70, 026114 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  3. Bizhani, G., Paczuski, M., Grassberger, P.: Phys. Rev. E 86, 011128 (2012)

    Article  ADS  Google Scholar 

  4. Mollison, D.: J. R. Stat. Soc. B 30, 283 (1977)

    MathSciNet  Google Scholar 

  5. Grassberger, P.: Math. Biosci. 63, 157 (1983)

    Article  MATH  Google Scholar 

  6. Grassberger, P.: Spreading of epidemic processes leading to fractal structures. In: Pietronero, L., Tosatti, E. (eds.) Fractals in Physics, p. 273. Elsevier, Amsterdam (1986)

    Google Scholar 

  7. Janssen, H.-K., Oerding, K., van Wijland, F., Hilhorst, H.J.: Eur. Phys. J. B 7, 137 (1999)

    Article  ADS  Google Scholar 

  8. Linder, F., Tran-Gia, J., Dahmen, S.R., Hinrichsen, H.: J. Phys. A 41, 185005 (2008)

    Article  MathSciNet  Google Scholar 

  9. Fisher, M.E., Ma, S., Nickel, B.G.: Phys. Rev. Lett. 29, 917 (1972)

    Article  ADS  Google Scholar 

  10. Sak, J.: Phys. Rev. B 8, 281 (1973)

    Article  ADS  Google Scholar 

  11. Yamazaki, Y.: Phys. Lett. 61A, 207 (1977)

    Article  ADS  Google Scholar 

  12. Gusmão, M.A., Theumann, W.K.: Phys. Rev. B 28, 6545 (1983)

    Article  ADS  Google Scholar 

  13. Honkonen, J., Nalimov, M.Y.: J. Phys. A 22, 751 (1989)

    Article  ADS  Google Scholar 

  14. Luijten, E., Messingfeld, H.: Phys. Rev. Lett. 86, 5305 (2001)

    Article  ADS  Google Scholar 

  15. Luijten, E., Blöte, W.J.: Phys. Rev. Lett. 89, 025703 (2002)

    Article  ADS  Google Scholar 

  16. Ruelle, D.: Statistical Mechanics: Rigorous Results. Benjamin, Elmsford (1969)

    MATH  Google Scholar 

  17. Dyson, F.J.: Commun. Math. Phys. 91, 212 (1969)

    Article  MathSciNet  ADS  Google Scholar 

  18. Anderson, P.W., Yuval, G., Hamann, D.R.: Phys. Rev. B 1, 4464 (1970)

    Article  ADS  Google Scholar 

  19. Thouless, D.J.: Phys. Rev. 187, 732 (1969)

    Article  ADS  Google Scholar 

  20. Cardy, J.: J. Phys. A 14, 1407 (1981)

    Article  ADS  Google Scholar 

  21. Schulman, L.S.: J. Phys. A 16, L639 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  22. Aizenman, M., Newman, C.M.: Commun. Math. Phys. 107, 611 (1986)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. Aizenman, M., Chayes, J.T., Chayes, L., Newman, C.M.: J. Stat. Phys. 50, 1 (1988)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. Grassberger, P.: J. Stat. Mech. (2013)

  25. Kleinberg, J.: In: Proceedings of the Thirty-Second Annual ACM Symposium on Theory of Computing, STOC ’00, pp. 163–170. ACM, New York (2000)

    Chapter  Google Scholar 

  26. Brockmann, D., Hufnagel, L., Geisel, T.: Nature 439, 462 (2006)

    Article  ADS  Google Scholar 

  27. Brockmann, D., Hufnagel, L.: Phys. Rev. Lett. 98, 178301 (2007)

    Article  ADS  Google Scholar 

  28. Barthélemy, M.: Phys. Rep. 499, 1 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  29. Biskup, M.: Ann. Probab. 19, 2938 (2004)

    Article  MathSciNet  Google Scholar 

  30. Benjamini, I., Berger, N.: Random Struct. Algorithms 19, 102 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  31. Berger, N.: arXiv:math/0409021 (2004)

  32. Coppersmith, D., Gamarnik, D., Sviridenko, M.: Random Struct. Algorithms 21, 1 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  33. Biskup, M.: arXiv:math/0406379v2 (2009)

  34. Mancinelli, R., Vergni, D., Vulpiani, A.: Europhys. Lett. 60, 532 (2002)

    Article  ADS  Google Scholar 

  35. del Castillo-Negrete, D., Carreras, B.A., Lynch, V.E.: Phys. Rev. Lett. 91, 018302 (2003)

    Article  ADS  Google Scholar 

  36. Sen, P., Chakrabarti, B.: J. Phys. A 34, 7749 (2001)

    Article  ADS  MATH  Google Scholar 

  37. Sen, P., Banerjee, K., Biswas, T.: Phys. Rev. E 66, 037102 (2001)

    Article  ADS  Google Scholar 

  38. Moukarzel, C.F., de Menzes, M.Argollo: Phys. Rev. E 65, 056709 (2002)

    Article  ADS  Google Scholar 

  39. Goswami, S., Biswas, S., Sen, P.: Physica A 390, 972 (2011)

    Article  ADS  Google Scholar 

  40. Emmerich, T., Bunde, A., Havlin, S., Guanlian, L., Daqing, L.: arXiv:1206.5710 (2012)

  41. Grassberger, P.: J. Phys. A, Math. Gen. 25, 5475 (1992)

    Article  ADS  Google Scholar 

  42. Lorenz, C.D., Ziff, R.M.: Phys. Rev. E 57, 230 (1998)

    Article  ADS  Google Scholar 

  43. Grassberger, P.: Phys. Rev. E 67, 036101 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  44. Grassberger, P.: J. Stat. Mech. 2006, P01004 (2006)

    Article  MathSciNet  Google Scholar 

  45. Kosmidis, K., Havlin, S., Bunde, A.: Europhys. Lett. 82, 48005 (2008)

    Article  ADS  Google Scholar 

  46. Daqing, L., Kosmidis, K., Bunde, A., Havlin, S.: Nat. Phys. 7, 481 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

For very helpful discussions I want to thank Aicko Schumann and Deepak Dhar. I also want to thank the latter for the kind hospitality at the Tata Institute of Fundamental Research in Mumbai, where part of this work was done. The work was begun at the Complexity Science Group at the Universality of Calgary. Finally my thanks go to Haye Hinrichsen and Hans-Karl Janssen for illuminating correspondence.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Grassberger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grassberger, P. Two-Dimensional SIR Epidemics with Long Range Infection. J Stat Phys 153, 289–311 (2013). https://doi.org/10.1007/s10955-013-0824-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-013-0824-7

Keywords

Navigation