Skip to main content
Log in

Anomalous Fourier’s Law and Long Range Correlations in a 1D Non-momentum Conserving Mechanical Model

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study by means of numerical simulations the velocity reversal model, a one-dimensional mechanical model of heat transport introduced in 1985 by Ianiro and Lebowitz. Our numerical results indicate that this model, which does not conserve momentum, exhibits nevertheless an anomalous Fourier’s law similar to the ones previously observed in momentum-conserving models. This disagrees with what can be expected by solving the Boltzmann equation (BE) for this system. The pair correlation velocity field also looks very different from the correlations usually seen in diffusive systems, and shares some similarity with those of momentum-conserving heat transport models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bonetto, F., Lebowitz, J.L., Rey-Bellet, L.: Fourier’s law: a challenge to theorists. In: Mathematical Physics 2000, pp. 128–150. Imp. Coll. Press, London (2000)

    Chapter  Google Scholar 

  2. Evans, M.R.: Phase transitions in one-dimensional nonequilibrium systems. Braz. J. Phys. 30, 42–57 (2000)

    Article  Google Scholar 

  3. Evans, M.R., Hanney, T.: Nonequilibrium statistical mechanics of the zero-range process and related models. J. Phys. A, Math. Gen. 38, R195 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. Spohn, H.: Long range correlations for stochastic lattice gases in a non-equilibrium steady state. J. Phys. A, Math. Gen. 16, 4275 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  5. Schmitz, R., Cohen, E.G.D.: Fluctuations in a fluid under a stationary heat flux. I. General theory. J. Stat. Phys. 39, 285–316 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  6. Dorfman, J.R., Kirkpatrick, T.R., Sengers, J.V.: Generic long-range correlations in molecular fluids. Annu. Rev. Phys. Chem. 45, 213–239 (1994)

    Article  ADS  Google Scholar 

  7. Ortiz de Zárate, J.M., Sengers, J.V.: On the physical origin of long-ranged fluctuations in fluids in thermal nonequilibrium states. J. Stat. Phys. 115, 1341–1359 (2004)

    Article  ADS  Google Scholar 

  8. Sengers, J.V., Ortiz de Zárate, J.M.: Thermal fluctuations in non-equilibrium thermodynamics. J. Non-Equilib. Thermodyn. 32, 319–329 (2007)

    Article  MATH  ADS  Google Scholar 

  9. Bertini, L., De Sole, A., Gabrielli, D., Jona-Lasinio, G., Landim, C.: Towards a nonequilibrium thermodynamics: A self-contained macroscopic description of driven diffusive systems. J. Stat. Phys. 135, 857–872 (2009)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. Derrida, B., Lebowitz, J., Speer, E.: Entropy of open lattice systems. J. Stat. Phys. 126, 1083–1108 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. Derrida, B.: Non-equilibrium steady states: fluctuations and large deviations of the density and of the current. J. Stat. Mech. Theory Exp. p. P07023 (2007)

  12. Bertini, L., De Sole, A., Gabrielli, D., Jona-Lasinio, G., Landim, C.: Fluctuations in stationary nonequilibrium states of irreversible processes. Phys. Rev. Lett. 87, 040601 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  13. Bertini, L., De Sole, A., Gabrielli, D., Jona-Lasinio, G., Landim, C.: Macroscopic fluctuation theory for stationary non-equilibrium states. J. Stat. Phys. 107, 635–675 (2002)

    Article  MATH  Google Scholar 

  14. Bodineau, T., Derrida, B., Lecomte, V., van Wijland, F.: Long range correlations and phase transitions in non-equilibrium diffusive systems. J. Stat. Phys. 133, 1013–1031 (2008)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  15. Bodineau, T., Derrida, B., Lebowitz, J.L.: A diffusive system driven by a battery or by a smoothly varying field. J. Stat. Phys. 140, 648–675 (2010)

    Article  MATH  ADS  Google Scholar 

  16. Lepri, S., Livi, R., Politi, A.: Heat conduction in chains of nonlinear oscillators. Phys. Rev. Lett. 78, 1896–1899 (1997)

    Article  ADS  Google Scholar 

  17. Lepri, S., Livi, R., Politi, A.: Thermal conduction in classical low-dimensional lattices. Phys. Rep. 377, 1–80 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  18. Dhar, A.: Heat transport in low-dimensional systems. Adv. Phys. 57, 457–537 (2008)

    Article  ADS  Google Scholar 

  19. Basile, G., Bernardin, C., Olla, S.: Momentum conserving model with anomalous thermal conductivity in low dimensional systems. Phys. Rev. Lett. 96, 204303 (2006)

    Article  ADS  Google Scholar 

  20. Basile, G., Bernardin, C., Olla, S.: Thermal conductivity for a momentum conservative model. Commun. Math. Phys. 287, 67–98 (2009)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. Mai, T., Dhar, A., Narayan, O.: Equilibration and universal heat conduction in Fermi-Pasta-Ulam chains. Phys. Rev. Lett. 98, 184301 (2007)

    Article  ADS  Google Scholar 

  22. Deutsch, J.M., Narayan, O.: One-dimensional heat conductivity exponent from a random collision model. Phys. Rev. E 68, 010201 (2003)

    Article  ADS  Google Scholar 

  23. Collet, P., Eckmann, J.-P., Mejía-Monasterio, C.: Superdiffusive heat transport in a class of deterministic one-dimensional many-particle Lorentz gases. J. Stat. Phys. 136, 331–347 (2009)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  24. Iacobucci, A., Legoll, F., Olla, S., Stoltz, G.: Thermal conductivity of the Toda lattice with conservative noise. J. Stat. Phys. 140, 336–348 (2010)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  25. Grassberger, P., Nadler, W., Yang, L.: Heat conduction and entropy production in a one-dimensional hard-particle gas. Phys. Rev. Lett. 89, 180601 (2002)

    Article  ADS  Google Scholar 

  26. Dhar, A., Narayan, O.: Dhar et al. reply. Phys. Rev. Lett. 100, 199402 (2008)

    Article  ADS  Google Scholar 

  27. Casati, G., Prosen, T.: Anomalous heat conduction in a one-dimensional ideal gas. Phys. Rev. E 67, 015203 (2003)

    Article  ADS  Google Scholar 

  28. Lepri, S., Livi, R., Politi, A.: Universality of anomalous one-dimensional heat conductivity. Phys. Rev. E 68, 067102 (2003)

    Article  ADS  Google Scholar 

  29. Dhar, A.: Heat conduction in a one-dimensional gas of elastically colliding particles of unequal masses. Phys. Rev. Lett. 86, 3554–3557 (2001)

    Article  ADS  Google Scholar 

  30. Narayan, O., Ramaswamy, S.: Anomalous heat conduction in one-dimensional momentum-conserving systems. Phys. Rev. Lett. 89, 200601 (2002)

    Article  ADS  Google Scholar 

  31. Lukkarinen, J., Spohn, H.: Anomalous energy transport in the FPU-β chain. Commun. Pure Appl. Math. 61, 1753–1786 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  32. Delfini, L., Lepri, S., Livi, R., Politi, A.: Anomalous kinetics and transport from 1d self-consistent mode-coupling theory. J. Stat. Mech. Theory Exp. p. P02007 (2007)

  33. Ianiro, N., Lebowitz, J.: Stationary nonequilibrium solutions of model Boltzmann equation. Found. Phys. 15, 531–544 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  34. Lepri, S., Mejía-Monasterio, C., Politi, A.: Nonequilibrium dynamics of a stochastic model of anomalous heat transport. J. Phys. A, Math. Theor. 43, 065002 (2010)

    Article  ADS  Google Scholar 

  35. Delfini, L., Lepri, S., Livi, R., Mejía-Monasterio, C., Politi, A.: Nonequilibrium dynamics of a stochastic model of anomalous heat transport: numerical analysis. J. Phys. A, Math. Theor. 43, 145001 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Gerschenfeld.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerschenfeld, A., Derrida, B. & Lebowitz, J.L. Anomalous Fourier’s Law and Long Range Correlations in a 1D Non-momentum Conserving Mechanical Model. J Stat Phys 141, 757–766 (2010). https://doi.org/10.1007/s10955-010-0076-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-010-0076-8

Keywords

Navigation