Skip to main content
Log in

Computing sparse and dense realizations of reaction kinetic systems

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

A numerical procedure for finding the sparsest and densest realization of a given reaction network is proposed in this paper. The problem is formulated and solved in the framework of mixed integer linear programming (MILP) where the continuous optimization variables are the nonnegative reaction rate coefficients, and the corresponding integer variables ensure the finding of the realization with the minimal or maximal number of reactions. The mass-action kinetics is expressed in the form of linear constraints adjoining the optimization problem. More complex realization problems can also be solved using the proposed framework by modifying the objective function and/or the constraints appropriately.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aykanat C., Pinar A.: Permuting sparse rectangular matrices into block-diagonal form. SIAM J. Scientific Comput. 25, 1860–1879 (2004)

    Article  Google Scholar 

  2. J. Bang-Jensen, G. Gutin, Digraphs: Theory, Algorithms and Applications (Springer, 2001)

  3. Bemporad A., Morari M.: Control of systems integrating logic, dynamics, and constraints. Automatica 35, 407–427 (1999)

    Article  Google Scholar 

  4. Cavalier T.M., Pardalos P.M., Soyster A.L.: Modeling and integer programming techniques applied to propositional calculus. Comput. Oper. Res. 17(6), 561–570 (1990)

    Article  Google Scholar 

  5. Craciun G., Feinberg M.: Multiple equilibria in complex chemical reaction networks: I. The injectivity property. SIAM J. Appl. Math. 65(5), 1526–1546 (2005)

    Article  CAS  Google Scholar 

  6. Craciun G., Feinberg M.: Multiple equilibria in complex chemical reaction networks: II. The species-reaction graph. SIAM J. Appl. Math. 66(4), 1321–1338 (2006)

    Article  CAS  Google Scholar 

  7. Craciun G., Pantea C.: Identifiability of chemical reaction networks. J. Math. Chem. 44, 244–259 (2008)

    Article  CAS  Google Scholar 

  8. Craciun G., Tang Y., Feinberg M.: Understanding bistability in complex enzyme-driven reaction networks. Proc. Natl. Acad. Sci. USA 103(23), 8697–8702 (2006)

    Article  CAS  Google Scholar 

  9. Donoho D.L.: For most large undetermined systems of linear equations the minimal l1-norm solution is also the sparsest solution. Commun. Pure Appl. Math. 59(7), 903–934 (2006)

    Article  Google Scholar 

  10. Donoho D.L., Tanner J.: Sparse nonnegative solution of underdetermined linear equations by linear programming. Proc. Natl. Acad. Sci. USA 102(27), 9446–9451 (2005)

    Article  CAS  Google Scholar 

  11. P. Érdi, J. Tóth, Mathematical Models of Chemical Reactions. Theory and Applications of Deterministic and Stochastic Models (Manchester University Press, Princeton University Press, Manchester, Princeton, 1989)

  12. Farkas Gy.: Local controllability of reactions. J. Math. Chem. 24, 1–14 (1998)

    Article  CAS  Google Scholar 

  13. Farkas Gy.: On local observability of chemical systems. J. Math. Chem. 24, 15–22 (1998)

    Article  CAS  Google Scholar 

  14. Farkas Gy.: Kinetic lumping schemes. Chem. Eng. Sci. 54, 3909–3915 (1999)

    Article  CAS  Google Scholar 

  15. M. Feinberg, Lectures on Chemical Reaction Networks. Notes of lectures given at the Mathematics Research Center (University of Wisconsin, 1979)

  16. Feinberg M.: Chemical reaction network structure and the stability of complex isothermal reactors—I. The deficiency zero and deficiency one theorems. Chem. Eng. Sci. 42(10), 2229–2268 (1987)

    Article  CAS  Google Scholar 

  17. Feinberg M.: Chemical reaction network structure and the stability of complex isothermal reactors—II. Multiple steady states for networks of deficiency one. Chem. Eng. Sci. 43, 1–25 (1988)

    Article  CAS  Google Scholar 

  18. C.A. Floudas, Nonlinear and Mixed-Integer Optimization (Oxford University Press, 1995)

  19. Gorban A.N., Karlin I.V.: Method of invariant manifold for chemical kinetics. Chem. Eng. Sci. 58, 4751–4768 (2003)

    Article  CAS  Google Scholar 

  20. Gorban A.N., Karlin I.V., Zinovyev A.Y.: Invariant grids for reaction kinetics. Physica A 33, 106–154 (2004)

    Article  Google Scholar 

  21. K.M. Hangos, G. Szederkényi, Special positive systems: the QP and the reaction kinetic system class, in Preprints of the Workshop on Systems and Control Theory in Honor of József Bokor on His 60th Birthday (Hungarian Academy of Sciences, 2008)

  22. Hansen P., Zheng M.: The Clar number of a benzenoid hydrocarbon and linear programming. J. Math. Chem. 15, 93–107 (1992)

    Article  Google Scholar 

  23. V. Hárs, J. Tóth. On the inverse problem of reaction kinetics, in Qualitative Theory of Differential Equations, vol 30 of Coll. Math. Soc. J. Bolyai, ed. by M. Farkas, L. Hatvani (North-Holland, Amsterdam, 1981), pp. 363–379

  24. K. Homlström, M.M. Edvall, A.O. Göran, TOMLAB for large-scale robust optimization, in Nordic MATLAB Conference (2003)

  25. J. Löfberg, YALMIP: a toolbox for modeling and optimization in MATLAB, in Proceedings of the CACSD Conference (Taipei, Taiwan, 2004)

  26. A. Makhorin, GNU Linear Programming Kit. Reference Manual.Version 4.10 (2006)

  27. G.L. Nemhauser, L.A. Wolsey. Integer and Combinatorial Optimization (Wiley, 1988)

  28. Otero-Muras I., Szederkényi G., Alonso A.A., Hangos K.M.: Local dissipative Hamiltonian description of reversible reaction networks. Syst. Control Lett. 57, 554–560 (2008)

    Article  Google Scholar 

  29. Raman R., Grossmann I.E.: Relation between MILP modelling and logical inference for chemical process synthesis. Comput. Chem. Eng. 15, 73–84 (1991)

    Article  CAS  Google Scholar 

  30. Raman R., Grossmann I.E.: Integration of logic and heuristic knowledge in MINLP optimization for process synthesis. Comput. Chem. Eng. 16(3), 155–171 (1992)

    Article  CAS  Google Scholar 

  31. Raman R., Grossmann I.E.: Modelling and computational techniques for logic based integer programming. Comput. Chem. Eng. 18, 563–578 (1994)

    Article  CAS  Google Scholar 

  32. Saled K., Abeledo H.: Alternative integer-linear-programming formulations of the Clar problem in hexagonal systems. J. Math. Chem. 39, 605–610 (2006)

    Article  Google Scholar 

  33. Schnell S., Chappell M.J., Evans N.D., Roussel M.R.: The mechanism distinguishability problem in biochemical kinetics: the single-enzyme, single-substrate reaction as a case study. C. R. Biol. 329, 51–61 (2006)

    Article  CAS  Google Scholar 

  34. Sontag E.: Structure and stability of certain chemical networks and applications to the kinetic proofreading model of T-cell receptor signal transduction. IEEE Trans. Autom. Control. 46, 1028–1047 (2001)

    Article  Google Scholar 

  35. Thomas R., Kaufman M.: Multistationarity, the basis of cell differentiation and memory. I. Structural conditions of multistationarity and other nontrivial behaviour. Chaos 11, 170–179 (2001)

    Article  Google Scholar 

  36. H.P. Williams, Model Building in Mathematical Programming (Wiley, 1993)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gábor Szederkényi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szederkényi, G. Computing sparse and dense realizations of reaction kinetic systems. J Math Chem 47, 551–568 (2010). https://doi.org/10.1007/s10910-009-9525-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-009-9525-5

Keywords

Navigation