Skip to main content

Advertisement

Log in

Downward transport and modification of tropospheric ozone through moist convection

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

This study estimated the largely unstudied downward transport and modification of tropospheric ozone associated with tropical moist convection using a coupled meteorology-chemistry model. High-resolution cloud resolving model simulations were conducted for deep moist convection events over West Africa during August 2006 to estimate vertical transport of ozone due to convection. Model simulations realistically reproduced the characteristics of deep convection as revealed by the estimated spatial distribution of temperature, moisture, cloud reflectivity, and vertical profiles of temperature and moisture. Also, results indicated that vertical transport reduced ozone by 50% (50 parts per billion by volume, ppbv) in the upper atmosphere (12–15 km) and enhanced ozone by 39% (10 ppbv) in the lower atmosphere (<2 km). Field observations confirmed model results and indicated that surface ozone levels abruptly increased by 10–30 ppbv in the area impacted by convection due to transport by downdrafts from the upper troposphere. Once in the lower troposphere, the lifetime of ozone decreased due to enhanced dry deposition and chemical sinks. Ozone removal via dry deposition increased by 100% compared to non-convective conditions. The redistribution of tropospheric ozone substantially changed hydroxyl radical formation in the continental tropical boundary layer. Therefore, an important conclusion of this study is that the redistribution of tropospheric ozone, due to deep convection in non-polluted tropical regions, can simultaneously reduce the atmospheric loading of ozone and substantially impact the oxidation capacity of the lower atmosphere via the enhanced formation of hydroxyl radicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Aghedo, A.M., Schultz, M.G., Rast, S.: The influence of African air pollution on regional and global tropospheric ozone. Atmos Chem Phys 7, 1193–1212 (2007). 10.5194/acp-7-1193-2007

    Article  Google Scholar 

  • Ancellet, G., Leclair De Bellevue, J., Mari, C., Nedelec, P., Kukui, A., Borbon, A., Perros, P.: Effects of regional-scale and convective transports on tropospheric ozone chemistry revealed by aircraft observations during the wet season of the AMMA campaign. Atmos Chem Phys 9, 383–411 (2009)

    Article  Google Scholar 

  • Barret, B., Williams, J.E., Bouarar, I., Yang, X., Josse, B., Law, K., Pham, M., Le Flochmoën, E., Liousse, C., Peuch, V.H., Carver, G.D., Pyle, J.A., Sauvage, B., van Velthoven, P., Schlager, H., Mari, C., Cammas, J.-P.: Impact of West African Monsoon convective transport and lightning NOx production upon the upper tropospheric composition: a multi-model study. Atmos Chem Phys 10, 5719–5738 (2010). 10.5194/acp-10-5719-2010

    Article  Google Scholar 

  • Barth, M.C., Kim, S.-W., Skamarock, W.C., Stuart, A.L., Pickering, K.E., Ott, L.E.: Simulations of the redistribution of formaldehyde, formic acid, and peroxides in the 10 July 1996 Stratospheric-Tropospheric Experiment: Radiation, Aerosols, and Ozone deep convection storm. J Geophys Res 112, D13310 (2007). 10.1029/2006JD008046

    Article  Google Scholar 

  • Bertram, T. H., et al.: Direct measurements of the convective recycling of the upper Troposphere. Science 315, doi:10.1126/science.1134548 (2007)

  • Betts, A.K., Gatti, L.V., Cordova, A.M., Silva Dias, M.A.F., Fuentes, J.D.: Transport of ozone to the surface by convective downdrafts at night. J Geophys Res 107, 8046 (2002). 10.1029/2000JD000158

    Article  Google Scholar 

  • Büker, M.L., Hitchman, M.H., Tripoli, G.J., Pierce, R.B., Browell, E.V., Al-Saadi, J.A.: Long-range convective ozone transport during INTEX. J Geophys Res 113, D14S90 (2008). 10.1029/2007JD009345

    Article  Google Scholar 

  • Chatfield, R.B., Crutzen, P.J.: Sulfur Dioxide in Remote Oceanic Air: Cloud Transport of Reactive Precursors. J Geophys Res 89, 7111–7132 (1984)

    Article  Google Scholar 

  • Chen, F., Dudhia, J.: Coupling an Advanced Land Surface-Hydrology Model with the Penn State-NCAR MM5 Modeling System. Part I: Model Implementation and Sensitivity. Mon Weather Rev 129, 569–585 (2001)

    Article  Google Scholar 

  • Cros, B., Delon, C., Affre, C., Marion, T., Druilhet, A., Perros, P.E., Lopez, A.: Sources and sinks of ozone in savanna and forest areas during expresso: Airborne turbulent flux measurements. J Geophys Res 105, 29347–29358 (2000)

    Article  Google Scholar 

  • DeLonge, M.S., Fuentes, J.D., Chan, S., Kucera, P.A., Joseph, E., Gaye, A.T., Daouda, B.: Attributes of mesoscale convective systems at the land-ocean transition in Senegal during NASA African Monsoon Multidisciplinary Analyses 2006. J Geophys Res 115, D10213 (2010). 10.1029/2009JD012518

    Article  Google Scholar 

  • Dickerson, R.R., et al.: Thunderstorms: An important mechanism in the transport of air pollutants. Science 235, 460–465 (1987)

    Article  Google Scholar 

  • Dickerson, R.R., Rhoads, K.P., Carsey, T.P., Oltmans, S.J., Burrows, J.P., Crutzen, P.J.: Ozone in the remote marine boundary layer: A possible role for halogens. J Geophys Res 104(D17), 21,385–21,395 (1999). 10.1029/1999JD900023

    Article  Google Scholar 

  • Donner, L.J., Horowitz, L.W., Fiore, A.M., Seman, C.J., Blake, D.R., Blake, N.J.: Transport of radon-222 and methyl iodide by deep convection in the GFDL Global Atmospheric Model AM2. J Geophys Res 112, D17303 (2007). 10.1029/2006JD007548

    Article  Google Scholar 

  • Dudhia, J.: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J Atmos Sci 46, 3077–3107 (1989)

    Article  Google Scholar 

  • Emmons, L.K., et al.: Description and evaluation of the Model for Ozone and Related Chemical Tracers, version 4 (MOZART-4). Geoscientific Model Dev 3, 43–67 (2010)

    Article  Google Scholar 

  • Folkins, I., Bernath, P., Boone, C., Donner, L.J., Eldering, A., Lesins, G., Martin, R.V., Sinnhuber, B.-M., Walker, K.: Testing convective parameterizations with tropical measurements of HNO3, CO, H2O, and O3: Implications for the water vapor budget. J Geophys Res 111, D23304 (2006). 10.1029/2006JD007325

    Article  Google Scholar 

  • Grant, D.D., Fuentes, J.D., DeLonge, M.S., Chan, S., Joseph, E., Kucera, P., Ndiaye, S.A., Gaye, A.T.: Ozone transport by mesoscale convective storms in western Senegal. Atmos Environ 42, 7104–7114 (2008a)

    Article  Google Scholar 

  • Grant, D.D., Fuentes, J.D., Chan, S., Stockwell, W.R., Wang, D., Ndiaye, S.A.: Volatile organic compounds at a rural site in western Senegal. J Atmos Chem 60, 19–35 (2008b)

    Article  Google Scholar 

  • Grell, G.A., Dévényi, D.: A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys Res Lett 29, 1693 (2002). 10.1029/2002GL015311

    Article  Google Scholar 

  • Grell, G.A., Peckham, S.E., Schmitz, R., McKeen, S.A., Frost, G., Skamarock, W.C., Eder, B.: Fully coupled “online” chemistry within the WRF model. Atmos Environ 39, 6957–6975 (2005)

    Article  Google Scholar 

  • Guenther, A., Zimmerman, P., Wildermuth, M.: Natural volatile organic compound emission rate estimates for U.S. woodland landscapes. Atmos Environ 28, 1197–1210 (1994)

    Article  Google Scholar 

  • Gustafson Jr., W.I., Berg, L.K., Easter, R.C., Ghan, S.J.: The Explicit-Cloud Parameterized-Pollutant hybrid approach for aerosol-cloud interactions in multiscale modeling framework models: tracer transport results. Environ Res Lett 3, 1–7 (2008)

    Google Scholar 

  • Hara, K., Osada, K., Yabuki, M., Hashida, G., Yamanouchi, T., Hayashi, M., Shiobara, M., Nishita, C., Wada, M.: Haze episodes at Syowa Station, coastal Antarctica: Where did they come from? J Geophys Res 115, doi:10.1029/2009JD012582 (2010)

  • Hauf, T., Schulte, P., Alheit, R., Schlager, H.: Rapid vertical trace gas transport by an isolated midlatitude thunderstorm. J Geophys Res 100, 22,957–22,970 (1995). 10.1029/95JD02324

    Article  Google Scholar 

  • Hong, S.-Y., Dudhia, J., Chen, S.-H.: A revised approach to ice-microphysical processes for the bulk parameterization of cloud and precipitation. Mon Weather Rev 132, 103–120 (2004)

    Article  Google Scholar 

  • Hong, S.-Y., Noh, Y., Dudhia, J.: A new vertical diffusion package with explicit treatment of entrainment processes. Mon Weather Rev 134, 2318–2341 (2006)

    Article  Google Scholar 

  • Houze Jr., R.A., Betts, A.K.: Convection in GATE. Rev Geophys Space Phys 19, 541–576 (1981)

    Article  Google Scholar 

  • Jacob, D.J., Wofsy, S.C.: Budgets of Reactive Nitrogen, Hydrocarbons, and Ozone Over the Amazon Forest during the Wet Season. J Geophys Res 95, 16,737–16,754 (1990). 10.1029/JD095iD10p16737

    Article  Google Scholar 

  • Jacob, D.J.: Heterogeneous chemistry and tropospheric ozone. Atmos Environ 34, 2131–2159 (2000)

    Article  Google Scholar 

  • Jacobson, M.Z.: Atmospheric Pollution, History, Science, and Regulation. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  • Jaeglé, L., Martin, R.V., Chance, K., Steinberger, L., Kurosu, T.P., Jacob, D.J., Modi, A.I., Yoboué, V., Sigha-Nkamdjou, L., Galy-Lacaux, C.: Satellite mapping of rain-induced nitric oxide emissions from soils. J Geophys Res 109, D21310 (2004). 10.1029/2004JD004787

    Article  Google Scholar 

  • Kley, D., Crutzen, P.J., Smit, H.G.J., Vomel, H., Oltmans, S.J., Grassl, H., Ramanathan, V.: Observations of near-zero ozone levels over the convective Pacific: Effects on air chemistry. Science 274, 230–233 (1996)

    Article  Google Scholar 

  • Kley, D., Smit, H.G.J., Vömel, H., Grassl, H., Ramanathan, V., Crutzen, P.J., Williams, S., Meywerk, J., Oltmans, S.L.: Tropospheric water-vapour and ozone cross-sections in a zonal plane over the central equatorial Pacific Ocean. Q J R Meteorol Soc 123, 2009–2040 (1997)

    Article  Google Scholar 

  • Kley, D., Smit, H.G.J., Nawrath, S., Luo, Z., Nedelec, P., Johnson, R.H.: Tropical Atlantic convection as revealed by ozone and relative humidity measurements. J Geophys Res 112, D23109 (2007). 10.1029/2007JD008599

    Article  Google Scholar 

  • Lawrence, M.G., von Kuhlmann, R., Salzmann, M., Rasch, P.J.: The balance of effects of deep convective mixing on tropospheric ozone. Geophys Res Lett 30(18), 1940 (2003). 10.1029/2003GL017644

    Article  Google Scholar 

  • Lawrence, M.G., Rasch, P.J.: Tracer transport in deep convective updrafts: Plume ensemble versus bulk formulations. J Atmos Sci 62, 2880–2894 (2005)

    Article  Google Scholar 

  • Lelieveld, J., Crutzen, P.J.: Role of deep cloud convection in the ozone budget of the troposphere. Science 264, 1759–1761 (1994)

    Article  Google Scholar 

  • Lu, R., Lin, C., Turco, R., Arakawa, A.: Cumulus transport of chemical tracers 1. Cloud-resolving model simulations. J Geophys Res 105, 10,001–10,021 (2000). 10.1029/2000JD900009

    Google Scholar 

  • Mahowald, N.M., Rasch, P.J., Prinn, R.G.: Cumulus parameterizations in chemical transport models. J Geophys Res 100, 26,173–26,189 (1995). 10.1029/95JD02606

    Article  Google Scholar 

  • Mlawer, E.J., Taubman, S.J., Brown, P.D., Iacono, M.J., Clough, S.A.: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J Geophys Res 102, 16663–16682 (1997)

    Article  Google Scholar 

  • Monin, A.S., Obukhov, A.M.: Osnovnye zakonomernosti turbulentnogo peremeshivanija v prizemnom sloe atmosfery (Basic Laws of Turbulent Mixing in the Atmosphere Near the Ground). Tr geofiz inst AN SSSR 24(151), 163–187 (1954)

    Google Scholar 

  • Mullendore, G.L., Durran, D.R., Holton, J.R.: Cross-tropopause tracer transport in midlatitude convection. J Geophys Res 110, D06113 (2005). 10.1029/2004JD005059

    Article  Google Scholar 

  • Pan, L.L., et al.: The Stratosphere-Troposphere Analyses of Regional Transport 2008 Experiment. Bull Am Meteorol Soc 91, 327–342 (2010)

    Article  Google Scholar 

  • Peckham, S. E., et al.: WRF Chem Version 3.1 User’s Guide, http://ruc.fsl.noaa.gov/wrf/WG11 (2009)

  • Pickering, K.E., Thompson, A.M., Scala, J.R., Tao, W.-K., Dickerson, R.R., Simpson, J.: Free Tropospheric Ozone Production Following Entrainment of Urban Plumes Into Deep Convection. J Geophys Res 97, 17,985–18,000 (1992a)

    Google Scholar 

  • Pickering, K., Thompson, A., Scala, J., Tao, W., Simpson, J.: Ozone production potential following convective redistribution of biomass burning emissions. J Atmos Chem 14, 297–313 (1992b)

    Article  Google Scholar 

  • Pickering, K.E., et al.: Convective transport of biomass burning emissions over Brazil during TRACE A. J Geophys Res 101, 23,993–24,012 (1996). 10.1029/96JD00346

    Google Scholar 

  • Pickering, K.E., et al.: Trace gas transport and scavenging in PEM-Tropics B South Pacific Convergence Zone convection. J Geophys Res 106, 32,591–32,602 (2001). 10.1029/2001JD000328

    Article  Google Scholar 

  • Reeves, C.E., et al.: Chemical and aerosol characterization of the troposphere over West Africa during the monsoon period as part of AMMA. Atmos Chem Phys 10, 7575–7601 (2010). 10.5194/acp-10-7575-2010

    Article  Google Scholar 

  • Ridley, B., et al.: Convective transport of reactive constituents to the tropical and mid-latitude tropopause region: I. Observations. Atmos Environ 38, 1259–1274 (2004)

    Article  Google Scholar 

  • Sahu, L.K., Lal, S.: Changes in surface ozone levels due to convective downdrafts over the Bay of Bengal. Geophys Res Lett 33, L10807 (2006). 10.1029/2006GL025994

    Article  Google Scholar 

  • Salzmann, M., Lawrence, M.G., Phillips, V.T.J., Donner, L.J.: Cloud system resolving model study of the roles of deep convection for photo-chemistry in the TOGA COARE/CEPEX region. Atmos Chem Phys 8, 2741–2757 (2008)

    Article  Google Scholar 

  • Saunois, M., Mari, C., Thouret, V., Cammas, J.P., Peyrillé, P., Lafore, J.P., Sauvage, B., Volz-Thomas, A., Nédélec, P., Pinty, J.P.: An idealized two-dimensional approach to study the impact of the West African monsoon on the meridional gradient of tropospheric ozone. J Geophys Res 113, D07306 (2008). 10.1029/2007JD008707

    Article  Google Scholar 

  • Saunois, M., Reeves, C.E., Mari, C.H., Murphy, J.G., Stewart, D.J., Mills, G.P., Oram, D.E., Purvis, R.M.: Factors controlling the distribution of ozone in the West African lower troposphere during the AMMA (African Monsoon Multidisciplinary Analysis) wet season campaign. Atmos Chem Phys 9, 6135–6155 (2009). 10.5194/acp-9-6135-2009

    Article  Google Scholar 

  • Sauvage, B., Thouret, V., Cammas, J.-P., Brioude, J., Nédélec, P., Mari, C.: Meridional ozone gradients in the African upper troposphere. Geophys Res Lett 34, L03817 (2007). 10.1029/2006GL028542

    Article  Google Scholar 

  • Scala, J.R., et al.: Cloud draft structure and trace gas transport. J Geophys Res 95, 17,015–17,030 (1990)

    Article  Google Scholar 

  • Schumacher, C., Zhang, M.H., Ciesielski, P.E.: Heating structures of the TRMM field campaigns. J Atmos Sci 64, 2593–2610 (2007)

    Article  Google Scholar 

  • Sigler, J.M., Fuentes, J.D., Heitz, R.C., Garstang, M., Fisch, G.: Ozone dynamics and deposition processes at a deforested site in the Amazon basin. Ambio 3, 21–28 (2002)

    Google Scholar 

  • Solomon, S., Thompson, D.W.J., Portmann, R.W., Oltmans, S.J., Thompson, A.M.: On the distribution and variability of ozone in the tropical upper troposphere: Implications for tropical deep convection and chemical-dynamical coupling. Geophys Res Lett 32, L23813 (2005). 10.1029/2005GL024323

    Article  Google Scholar 

  • Stockwell, W.R., Middleton, P., Chang, J.S., Tang, X.: The second generation regional acid deposition model chemical mechanism for regional air quality modeling. J Geophys Res 95, 16,343–16,367 (1990)

    Article  Google Scholar 

  • Stockwell, W.R., Kirchner, F., Kuhn, M., Seefeld, S.: A new mechanism for regional atmospheric chemistry modeling. J Geophys Res 102, 25 847–25 879 (1997)

    Article  Google Scholar 

  • Takashima, H., Shiotani, M., Fujiwara, M., Nishi, N., Hasebe, F.: Ozonesonde observations at Christmas Island (2°N, 157°W) in the equatorial central Pacific. J Geophys Res 113, D10112 (2008). 10.1029/2007JD009374

    Article  Google Scholar 

  • Thompson, A.M., Pickering, K.E., Dickerson, R.R., Ellis Jr., W.G., Jacob, D.J., Scala, J.R., Tao, W.-K., McNamara, D.P., Simpson, J.: Convective transport over the central United States and its role in regional CO and ozone budgets. J Geophys Res 99, 18,703–18,711 (1994)

    Google Scholar 

  • Thompson, A.M., Tao, W.-K., Pickering, K.E., Scala, J.R., Simpson, J.: Tropical deep convection and ozone formation. Bull Am Meteorol Soc 78, 1043–1054 (1997)

    Article  Google Scholar 

  • Vogt, R., Crutzen, P.J., Sander, R.: A mechanism for halogen release from sea-salt aerosol in the remote marine boundary layer. Nature 383, 327–330 (1996)

    Article  Google Scholar 

  • Wang, C., Crutzen, P.J., Ramanathan, V., Williams, S.F.: The role of a deep convective storm over the tropical Pacific Ocean in the redistribution of atmospheric chemical species. J Geophys Res 100, 11,509–11,516 (1995). 10.1029/95JD01173

    Google Scholar 

  • Wang, C., Prinn, R.G.: On the roles of deep convective clouds in tropospheric chemistry. J Geophys Res 105, 22,269–22,297 (2000). 10.1029/2000JD900263

    Google Scholar 

  • Wesley, M.L.: Parameterization of surface resistance to gaseous dry deposition in regional numerical models. Atmos Environ 16, 1293–1304 (1989)

    Google Scholar 

  • Williams, J.E., et al.: Global chemistry simulations in the AMMA multimodel intercomparison Project. Bull Am Meteorol Soc 91, 611–624 (2010). 10.1175/2009BAMS2818.1

    Article  Google Scholar 

  • Zhang, G.J., McFarlane, N.A.: Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Centre general circulation model. Atmos Ocean 33, 407–446 (1995)

    Google Scholar 

  • Zhang, F., Snyder, C., Rotunno, R.: Effects of moist convection on mesoscale predictability. J Atmos Sci 60, 1173–1185 (2003)

    Article  Google Scholar 

Download references

Acknowledgement

NASA funded the field research activities associated with NAMMA in Senegal (Grant Number MNX06AC82G). Xiao-Ming Hu received support from the Pennsylvania State University to participate in this research. Kenneth Pratt and David Doughty provided useful comments to improve the original manuscript. Also, two journal reviewers provided excellent comments to improve the original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose D. Fuentes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, XM., Fuentes, J.D. & Zhang, F. Downward transport and modification of tropospheric ozone through moist convection. J Atmos Chem 65, 13–35 (2010). https://doi.org/10.1007/s10874-010-9179-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10874-010-9179-5

Keywords

Navigation