Skip to main content
Log in

Effect of calcination temperature on cobalt substituted cadmium ferrite nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

An Erratum to this article was published on 01 September 2015

Abstract

The Cd0.9Co0.1Fe2O4 nanoparticles are synthesized using chemical co-precipitation method. The as-prepared samples are calcinated at 300 and 600 °C for 2 h. The thermal effects on structural, morphological and magnetic properties are reported. The X-ray diffraction data confirm the formation of single-phase cubic spinel structure. The Surface morphology and compositional features are studied using SEM with EDX and TEM measurements. The Magnetic properties of samples are evaluated using vibrating sample magnetometer. The magnetic properties, like saturation magnetization and coercivity are increases with increasing calcination temperature. The enhancement is attributed to the transition from a multi-domain to a single-domain nature. From the FTIR spectra, it is confirmed that the vibrations of tetrahedral and octahedral complexes corresponds to absorption bands at 590 cm−11) and 460 cm−12) respectively. The particle size enhances significantly with increasing the calcinated temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Z. Zi, Y. Sun, X. Zhu, Z. Yang, J. Dai, W. Song, J. Magn. Magn. Mater. 321, 1251 (2009)

    Article  Google Scholar 

  2. M. Grigorova, H.J. Blythe, V. Blaskov, V. Rusanov, V. Petkov, V. Masheva, D. Nihtianova, L.M. Martinez, J.S. Munoz, M. Mikhov, J. Magn. Magn. Mater. 183, 163 (1998)

    Article  Google Scholar 

  3. H. Shenker, Phys. Rev. 107, 1246 (1957)

    Article  Google Scholar 

  4. A.R. West, Basic Solid State Chemistry (Wiley, Delhi, 1998), p. 356

    Google Scholar 

  5. A.B. Salunkhe, V.M. Khot, M.R. Phadatare, S.H. Pawar, J. Alloy. Compd. 514, 91 (2012)

    Article  Google Scholar 

  6. K. Maaz, A. Mumtaz, S.K. Hasnain, A. Ceylan, J. Magn. Magn. Mater. 308, 289 (2007)

    Article  Google Scholar 

  7. K.P. Naidek, F. Bianconi, T.C. Rizuti da Rocha, D. Zanchet, J.A. Bonacin, M.A. Novak, M.G.F. Vaz, H. Winnischofer, J. Colloid Interface Sci. 358, 39 (2011)

    Article  Google Scholar 

  8. Y. Cedeno-Mattei, O. Perales-Perez, Microelectron. J. 40, 673 (2009)

    Article  Google Scholar 

  9. P.C. Fannin, C.N. Marin, I. Malaescu, N. Stefu, P. Vlazan, S. Novaconi, P. Sfirloaga, S. Popescu, C. Couper, Mater. Des. 32, 1600 (2011)

    Article  Google Scholar 

  10. Y. Zhang, Z. Yang, D. Yin, Y. Liu, C. Fei, R. Xiong, J. Shi, G. Yan, J. Magn. Magn. Mater. 322, 3470 (2010)

    Article  Google Scholar 

  11. M. Sajjia, M. Oubaha, T. Prescott, A.G. Olabi, J. Alloy. Compd. 506, 400 (2010)

    Article  Google Scholar 

  12. C. Caizer, M. Stefanescu, J. Phys. D Appl. Phys. 35, 3035 (2002)

    Article  Google Scholar 

  13. M. George, S.S. Nair, K.A. Malini, P.A. Joy, M.R. Anantharaman, J. Phys. D Appl. Phys. 40, 1593 (2007)

    Article  Google Scholar 

  14. K. Krieble, C.C.H. Lo, Y. Melikhov, J.E. Snyder, J. Appl. Phys. 99, 8M912 (2006)

    Article  Google Scholar 

  15. S.J. Lee, C.C.H. Lo, P.N. Matlage, S.H. Song, Y. Melikhov, J.E. Snyder, D.C. Jiles, J. Appl. Phys. 102, 073910 (2007)

    Article  Google Scholar 

  16. B. Narendra, D. Bhaskar, G. Srinivas, R.V.S.S.N. Ravikumal, Ch. Venkata Reddy, in International Conference on Advanced Nanomaterials & Emerging Engineering Technologies (ICANMEET-2013): IEEE (2013), p. 181

  17. A.M.M. Farea, S. Kumar, K.M. Batoo, A. Yousef, Alimuddin, Phys. B 403, 684 (2008)

    Article  Google Scholar 

  18. A.M.M. Farea, S. Kumar, K.M. Batoo, C.G. Lee, Alimuddin, J. Alloy. Compd. 464, 361 (2008)

    Article  Google Scholar 

  19. R. Nongjai, S. Khan, K. Asokan, H. Ahmed, I. Khan, J. Appl. Phys. 112, 084321 (2012)

    Article  Google Scholar 

  20. R.M. Gabr, M.M. Girgis, A.M. El-Awad, Mater. Chem. Phys. 28, 413 (1991)

    Article  Google Scholar 

  21. A.K. Nikumbh, A.V. Nagawade, V.B. Tadke, P.P. Bakare, J. Mater. Sci. 36, 653 (2001)

    Article  Google Scholar 

  22. V. Pillai, D.O. Shah, J. Magn. Magn. Mater. 163, 243 (1996)

    Article  Google Scholar 

  23. Caillot, G. Pourroy, D. Stuerga, J. Solid State Chem. 177, 3843 (2004)

    Article  Google Scholar 

  24. K. Maaz, A. Mumtaz, S.K. Hasanaina, A. Ceylan, J. Magn. Magn. Mater. 308, 289 (2007)

    Article  Google Scholar 

  25. S.M. Montemayor, L.A. García-Cerda, J.R. Torres-Lubián, Mater. Lett. 59, 1056 (2005)

    Article  Google Scholar 

  26. R.S. Hassan, N. Viart, C.U. Bouillet, J.L. Loison, G. Versini, J.P. Vola, O. Cregut, G. Pourroy, D. Muller, D. Chateigner, Thin Solid Films 515, 2943 (2007)

    Article  Google Scholar 

  27. J.G. Na, J. Mater. Sci. Lett. 17, 229 (1998)

    Article  Google Scholar 

  28. M. Naoe, N. Matsushita, J. Magn. Magn. Mater. 155, 216 (1996)

    Article  Google Scholar 

  29. R.S. Mane, C.D. Lokhande, Mater. Chem. Phys. 65, 1 (2000)

    Article  Google Scholar 

  30. M.A. Gabal, S.S. Ata-Allah, Mater. Chem. Phys. 85, 104 (2004)

    Article  Google Scholar 

  31. B.D. Culity, Elements of X-ray Diffraction, (Addison-Wesley Publishing Co. Inc., 1976), chapter 14

  32. T. Aswani, V.P. Manjari, B. Babu, S.M. Begum, G.R. Sundari, K. Ravindranadh, R.V.S.S.N. Ravikumar, J. Mol. Struct. 1063, 178 (2014)

    Article  Google Scholar 

  33. P.K.R. Kalita, B.K. Sarma, H.L. Das, Bull. Mater. Sci. 23, 313 (2000)

    Article  Google Scholar 

  34. S. Modak, M. Ammar, F. Mazaleyrat, S. Das, P.K. Chakrabarti, J. Alloys. Compd. 473, 15 (2009)

    Article  Google Scholar 

  35. S.T. Alone, S.E. Shirsath, R.H. Kadam, K.M. Jadhav, J. Alloys. Compd. 509, 5055 (2011)

    Article  Google Scholar 

  36. M.A. Gabal, R.M. El-Shistawy, Y.M. Al Angari, J. Magn. Magn. Mater. 324, 2258 (2012)

    Article  Google Scholar 

  37. N.M. Deraz, A. Alarifi, J. Anal. Appl. Pyrolysis. 94, 41 (2012)

    Article  Google Scholar 

  38. Mehrnaz Gharagozlou, J. Alloys Compd. 486, 660 (2009)

    Article  Google Scholar 

  39. S. Singhal, K. Chandra, J. Solid State Chem. 180, 296 (2007)

    Article  Google Scholar 

  40. D.R. Mane, D.D. Birajdar, S.E. Shirsath, R.A. Telugu, R.H. Kadam, Phys. Status Solidi A 207, 2355 (2010)

    Article  Google Scholar 

  41. Z. Chen, L. Gao, Mater. Sci. Eng., B 141, 82 (2007)

    Article  Google Scholar 

  42. Y. Chen, M. Ruan, Y.F. Jiang, S.G. Cheng, W. Li, J. Alloys Compd. 493, L36 (2010)

    Article  Google Scholar 

  43. S.A. Patil, V.C. Mahajan, A.K. Gatge, S.D. Lotake, Mater. Chem. Phys. 57, 86 (1998)

    Article  Google Scholar 

  44. O.M. Hemeda, M.M. Barakat, J. Magn. Magn. Mater. 223, 127 (2001)

    Article  Google Scholar 

  45. G.K. Joshi, A.Y. Khot, S.R. Savant, Solid State Commun. 65, 1593 (1988)

    Article  Google Scholar 

  46. B.K. Bammannavar, L.R. Naik, R.B. Pujar, B.K. Chougule, Indian J. Eng. Mater. Sci. 14, 381 (2007)

    Google Scholar 

  47. Y. Cedeño-Mattei, O. Perales-Pérez, Microelectron. J. 40, 673 (2009)

    Article  Google Scholar 

  48. C.P. Bean, J. Appl. Phys. 26, 1381 (1955)

    Article  Google Scholar 

  49. R.C. Kambale, K.M. Song, Y.S. Koo, N. Hur, J. Appl. Phys. 110, 053910 (2011)

    Article  Google Scholar 

  50. R.D. Waldron, Phys. Rev. 99, 1727 (1955)

    Article  Google Scholar 

  51. A.R. West, Solid State Chemistry and Its Applications (Wiley, London, 1984)

    Google Scholar 

  52. C. Villete, Ph Tailhades, A. Rousset, G.U. Kulkarni, K.R. Kanan, C.N.R. Rao, M. Lenglet, J. Solid State Chem. 141, 56 (1998)

    Article  Google Scholar 

  53. B.P. Ladgaonkar, C.B. Kolekar, A.S. Vaingankar, Bull. Mater. Sci. 25(4), 351 (2002)

    Article  Google Scholar 

  54. S.H. Xiao, W.F. Jiang, L.Y. Li, X.J. Li, Mater. Chem. Phys. 106, 82 (2007)

    Article  Google Scholar 

  55. Y. Liu, Y. Zhang, J.D. Feng, C.F. Li, J. Shi, R. Xiong, J. Exper. Nano. Sci. 4, 159 (2009)

    Article  Google Scholar 

  56. A. Pui, D. Gherca, G. Carja, Digest J Nanomater. Biostruct. 6, 1783 (2011)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) funded by the Korea government (MEST) (NRF-2012R1A1A2009392).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ch. Venkata Reddy or S. V. Prabhakar Vattikuti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venkata Reddy, C., Byon, C., Narendra, B. et al. Effect of calcination temperature on cobalt substituted cadmium ferrite nanoparticles. J Mater Sci: Mater Electron 26, 5078–5084 (2015). https://doi.org/10.1007/s10854-015-3031-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3031-2

Keywords

Navigation