Skip to main content

Advertisement

Log in

Pronuclear removal of tripronuclear zygotes can establish heteroparental normal karyotypic human embryonic stem cells

  • Stem Cell Biology
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

This study aimed to derive heteroparental normal karyotypic human embryonic stem cells (hESCs) from microsurgically corrected tripronuclear (3PN) zygotes.

Methods

After sequential culture for 5–6 days, embryos developed from microsurgically corrected 3PN zygotes were analyzed by fluorescence in situ hybridization (FISH) using probes for chromosomes 17, X and Y. Intact 3PN zygotes from clinical in vitro fertilization (IVF) cycles were cultured as the control group. The inner cell mass (ICM) of blastocysts that developed from microsurgically corrected 3PN zygotes was used to derive hESC lines, and the stem cell characteristics of these lines were evaluated. G-banding analysis was adopted to identify the karyotype of the hESC line, and the heteroparental inheritance of the hESC line was analyzed by DNA fingerprinting analysis.

Results

The blastocyst formation rate (13.5 %) of the microsurgically corrected 3PN zygotes was significantly higher (P < 0.05) than that of intact 3PN zygotes (8.7 %). The diploid rate of the blastocysts (55.0 %) was significantly higher (P < 0.05) than that of the arrested cleavage-stage embryos (18.4 %) in microsurgically corrected 3PN zygotes. The triploid rate of the microsurgically corrected 3PN zygotes (5.7 %) was significantly lower (P < 0.01) than that of intact 3PN zygotes (19.4 %). Furthermore, we established one heteroparental normal karyotypic hESC line from the microsurgically corrected tripronuclear zygotes.

Conclusions

Pronuclear removal can effectively remove the surplus chromosome set of 3PN zygotes. A combination of pronuclear removal and blastocyst culture enables the selection of diploidized blastocysts from which heteroparental normal karyotypic hESC lines can be derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Pieters MH, Dumoulin JC, Ignoul-Vanvuchelen RC, Bras M, Evers JL, Geraedts JP. Triploidy after in vitro fertilization: cytogenetic analysis of human zygotes and embryos. J Assist Reprod Genet. 1992;9:68–76.

    Article  CAS  PubMed  Google Scholar 

  2. Rosenbusch BE. Selective microsurgical removal of a pronucleus from tripronuclear human oocytes to restore diploidy: disregarded but valuable? Fertil Steril. 2009;92:897–903. doi:10.1016/j.fertnstert.2008.07.1740.

    Article  PubMed  Google Scholar 

  3. Porter R, Han T, Tucker MJ, Graham J, Liebermann J, Sills ES. Estimation of second polar body retention rate after conventional insemination and intracytoplasmic sperm injection: in vitro observations from more than 5000 human oocytes. J Assist Reprod Genet. 2003;20:371–6.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Kang HJ, Rosenwaks Z. Triploidy—the breakdown of monogamy between sperm and egg. Int J Dev Biol. 2008;52:449–54. doi:10.1387/ijdb.082602hk.

    Article  PubMed  Google Scholar 

  5. Plachot M, Crozet N. Fertilization abnormalities in human in-vitro fertilization. Hum Reprod. 1992;7 Suppl 1:89–94.

    Article  PubMed  Google Scholar 

  6. Staessen C, Van Steirteghem AC. The chromosomal constitution of embryos developing from abnormally fertilized oocytes after intracytoplasmic sperm injection and conventional in-vitro fertilization. Hum Reprod. 1997;12:321–7.

    Article  CAS  PubMed  Google Scholar 

  7. Grossmann M, Calafell JM, Brandy N, Vanrell JA, Rubio C, Pellicer A, et al. Origin of tripronucleate zygotes after intracytoplasmic sperm injection. Hum Reprod. 1997;12:2762–5.

    Article  CAS  PubMed  Google Scholar 

  8. Golubovsky MD. Postzygotic diploidization of triploids as a source of unusual cases of mosaicism, chimerism and twinning. Hum Reprod. 2003;18:236–42.

    Article  CAS  PubMed  Google Scholar 

  9. Rosenbusch BE. Mechanisms giving rise to triploid zygotes during assisted reproduction. Fertil Steril. 2008;90:49–55. doi:10.1016/j.fertnstert.2007.06.031.

    Article  PubMed  Google Scholar 

  10. Zaragoza MV, Surti U, Redline RW, Millie E, Chakravarti A, Hassold TJ. Parental origin and phenotype of triploidy in spontaneous abortions: predominance of diandry and association with the partial hydatidiform mole. Am J Hum Genet. 2000;66:1807–20. doi:10.1086/302951.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. McFadden DE, Robinson WP. Phenotype of triploid embryos. J Med Genet. 2006;43:609–12. doi:10.1136/jmg.2005.037747.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Berkowitz RS, Goldstein DP. Clinical practice molar pregnancy. N Engl J Med. 2009;360:1639–45. doi:10.1056/NEJMcp0900696.

    Article  CAS  PubMed  Google Scholar 

  13. Rawlins RG, Binor Z, Radwanska E, Dmowski WP. Microsurgical enucleation of tripronuclear human zygotes. Fertil Steril. 1988;50:266–72.

    CAS  PubMed  Google Scholar 

  14. Gordon JW, Grunfeld L, Garrisi GJ, Navot D, Laufer N. Successful microsurgical removal of a pronucleus from tripronuclear human zygotes. Fertil Steril. 1989;52:367–72.

    CAS  PubMed  Google Scholar 

  15. Malter HE, Cohen J. Embryonic development after microsurgical repair of polyspermic human zygotes. Fertil Steril. 1989;52:373–80.

    CAS  PubMed  Google Scholar 

  16. Palermo G, Munne S, Cohen J. The human zygote inherits its mitotic potential from the male gamete. Hum Reprod. 1994;9:1220–5.

    CAS  PubMed  Google Scholar 

  17. Ivakhnenko V, Cieslak J, Verlinsky Y. A microsurgical technique for enucleation of multipronuclear human zygotes. Hum Reprod. 2000;15:911–6.

    Article  CAS  PubMed  Google Scholar 

  18. Escriba MJ, Martin J, Rubio C, Valbuena D, Remohi J, Pellicer A, et al. Heteroparental blastocyst production from microsurgically corrected tripronucleated human embryos. Fertil Steril. 2006;86:1601–7. doi:10.1016/j.fertnstert.2006.04.047.

    Article  PubMed  Google Scholar 

  19. Gu Y-F, Lin G, Lu C-F, Lu G-X. Analysis of the first mitotic spindles in human in vitro fertilized tripronuclear zygotes after pronuclear removal. Reprod BioMed Online. 2009;19:745–54.

    Article  PubMed  Google Scholar 

  20. Kattera S, Chen C. Normal birth after microsurgical enucleation of tripronuclear human zygotes: case report. Hum Reprod. 2003;18:1319–22.

    Article  PubMed  Google Scholar 

  21. Gardner DK, Schoolcraft WB. No longer neglected: the human blastocyst. Hum Reprod. 1998;13:3289–92.

    Article  CAS  PubMed  Google Scholar 

  22. Jones GM, Trounson AO, Gardner DK, Kausche A, Lolatgis N, Wood C. Evolution of a culture protocol for successful blastocyst development and pregnancy. Hum Reprod. 1998;13:169–77.

    Article  CAS  PubMed  Google Scholar 

  23. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282:1145–7.

    Article  CAS  PubMed  Google Scholar 

  24. Reubinoff BE, Pera MF, Fong CY, Trounson A, Bongso A. Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat Biotechnol. 2000;18:399–404. doi:10.1038/74447.

    Article  CAS  PubMed  Google Scholar 

  25. Mitalipova M, Calhoun J, Shin S, Wininger D, Schulz T, Noggle S, et al. Human embryonic stem cell lines derived from discarded embryos. Stem Cells. 2003;21:521–6. doi:10.1634/stemcells.21-5-521.

    Article  CAS  PubMed  Google Scholar 

  26. Lavon N, Narwani K, Golan-Lev T, Buehler N, Hill D, Benvenisty N. Derivation of euploid human embryonic stem cells from aneuploid embryos. Stem Cells. 2008;26:1874–82. doi:10.1634/stemcells.2008-0156.

    Article  CAS  PubMed  Google Scholar 

  27. Lin G, OuYang Q, Zhou XY, Gu YF, Yuan D, Li W, et al. A highly homozygous and parthenogenetic human embryonic stem cell line derived from a one-pronuclear oocyte following in vitro fertilization procedure. Cell Res. 2007;17:999–1007. doi:10.1038/cr.2007.97.

    Article  CAS  PubMed  Google Scholar 

  28. Lin G, Xie Y, OuYang Q, Qian X, Xie P, Zhou X, et al. HLA-matching potential of an established human embryonic stem cell bank in China. Cell Stem Cell. 2009;5:461–5. doi:10.1016/j.stem.2009.10.009.

    Article  CAS  PubMed  Google Scholar 

  29. Angell RR, Templeton AA, Messinis IE. Consequences of polyspermy in man. Cytogenet Cell Genet. 1986;42:1–7.

    Article  CAS  PubMed  Google Scholar 

  30. Kola I, Trounson A, Dawson G, Rogers P. Tripronuclear human oocytes: altered cleavage patterns and subsequent karyotypic analysis of embryos. Biol Reprod. 1987;37:395–401.

    Article  CAS  PubMed  Google Scholar 

  31. Rosenbusch B, Schneider M, Sterzik K. The chromosomal constitution of multipronuclear zygotes resulting from in-vitro fertilization. Hum Reprod. 1997;12:2257–62.

    Article  CAS  PubMed  Google Scholar 

  32. Iliopoulos D, Vassiliou G, Sekerli E, Sidiropoulou V, Tsiga A, Dimopoulou D, et al. Long survival in a 69, XXX triploid infant in Greece. Genet Mol Res. 2005;4:755–9.

    PubMed  Google Scholar 

  33. Clouston HJ, Fenwick J, Webb AL, Herbert M, Murdoch A, Wolstenholme J. Detection of mosaic and non-mosaic chromosome abnormalities in 6- to 8-day old human blastocysts. Hum Genet. 1997;101:30–6.

    Article  CAS  PubMed  Google Scholar 

  34. Evsikov S, Verlinsky Y. Mosaicism in the inner cell mass of human blastocysts. Hum Reprod. 1998;13:3151–5.

    Article  CAS  PubMed  Google Scholar 

  35. Magli MC, Jones GM, Gras L, Gianaroli L, Korman I, Trounson AO. Chromosome mosaicism in day 3 aneuploid embryos that develop to morphologically normal blastocysts in vitro. Hum Reprod. 2000;15:1781–6.

    Article  CAS  PubMed  Google Scholar 

  36. Sandalinas M, Sadowy S, Alikani M, Calderon G, Cohen J, Munne S. Developmental ability of chromosomally abnormal human embryos to develop to the blastocyst stage. Hum Reprod. 2001;16:1954–8.

    Article  CAS  PubMed  Google Scholar 

  37. Liao H, Zhang S, Cheng D, Ouyang Q, Lin G, Gu Y, et al. Cytogenetic analysis of human embryos and embryonic stem cells derived from monopronuclear zygotes. J Assist Reprod Genet. 2009;26:583–9. doi:10.1007/s10815-009-9355-1.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Hardy K. Cell death in the mammalian blastocyst. Mol Hum Reprod. 1997;3:919–25.

    Article  CAS  PubMed  Google Scholar 

  39. Janny L, Menezo YJ. Maternal age effect on early human embryonic development and blastocyst formation. Mol Reprod Dev. 1996;45:31–7.

    Article  CAS  PubMed  Google Scholar 

  40. Fan Y, Li R, Huang J, Yu Y, Qiao J. Diploid, but not haploid, human embryonic stem cells can be derived from microsurgically repaired tripronuclear human zygotes. Cell Cycle. 2013;12:302–11. doi:10.4161/cc.23103.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Jiang C, Cai L, Huang B, Dong J, Chen A, Ning S, et al. Normal human embryonic stem cell lines were derived from microsurgical enucleated tripronuclear zygotes. J Cell Biochem. 2013;114:2016–23. doi:10.1002/jcb.24547.

    Article  CAS  PubMed  Google Scholar 

  42. Fan Y, Li R, Huang J, Zhao HC, Ding T, Sun X, et al. Improved efficiency of microsurgical enucleated tripronuclear zygotes development and embryonic stem cell derivation by supplementing epidermal growth factor, brain-derived neurotrophic factor, and insulin-like growth factor-1. Stem Cells Dev. 2014;23:563–75. doi:10.1089/scd.2013.0420.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Major State Basic Research Development Program of China (no. 2012CB944901) and the National Science Foundation of China (no. 81222007), and by the Program for New Century Excellent Talents in University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong-Qing Liao or Ge Lin.

Additional information

Capsule

Pronuclear removal can effectively remove the surplus chromosome set of 3PN zygotes. A combination of pronuclear removal and blastocyst culture enables the selection of diploidized blastocysts from which heteroparental normal karyotypic hESC lines can be derived.

Hong-Qing Liao and Qi OuYang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, HQ., OuYang, Q., Zhang, SP. et al. Pronuclear removal of tripronuclear zygotes can establish heteroparental normal karyotypic human embryonic stem cells. J Assist Reprod Genet 33, 255–263 (2016). https://doi.org/10.1007/s10815-015-0634-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-015-0634-8

Keywords

Navigation