Skip to main content
Log in

Characterization of a novel male sterile mutant of Tagetes patula induced by heat shock

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Tagetes patula L. is an annual plant belonging to the Asteraceae family. Currently, commercial F1 cultivars are produced through the use of artificial emasculation which is a very laborious procedure, particularly in view of the composite capitulum structure. To date, no male sterile line is available in this species, but the isolation of such material would provide a valuable tool for the establishment of an efficient cross-pollination system for the production of F1 hybrids. In this study, we report the characterization of a novel pollen abortion mutant of Tagetes patula which was isolated from 1,796 heat shock induced cutting seedlings. Histological and cytological observation demonstrated that the abnormal development of the microspores during the binucleate pollen stage led to pollen abortion, and this was correlated to premature tapetum degeneration. Cross hybridization experiments indicated that a recessive nuclear gene was responsible for the trait. This novel male sterile mutant of Tagetes patula appears to be an applicable material for improving the breeding efficiency of the species and may be used to significantly improve ornamental traits in F1 generations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anjani K (2005) Development of cytoplasmic-genic male sterility in safflower. Plant Breeding 124(3):310–312. doi:10.1111/j.1439-0523.2005.01089.x

    Article  Google Scholar 

  • Appidi JR, Grierson DS, Afolayan AJ (2008) Foliar micromorphology of Hermannia icana Cav. Pak J Biol Sci 11(16):2023–2027

    Article  PubMed  CAS  Google Scholar 

  • Ariizumi T, Toriyama K (2011) Genetic regulation of sporopollenin synthesis and pollen exine development. Annu Rev Plant Biol 62(1):437–460. doi:10.1146/annurev-arplant-042809-112312

    Article  PubMed  CAS  Google Scholar 

  • Bareen FE, Nazir A (2010) Metal decontamination of tannery solid waste using Tagetes patula in association with saprobic and mycorrhizal fungi. Environmentalist 30(1):45–53. doi:10.1007/s10669-009-9241-5

    Article  Google Scholar 

  • Bayer M, Hess D (2005) Restoring full pollen fertility in transgenic male-sterile tobacco (Nicotiana tabacum L.) by Cre-mediated site-specific recombination. Mol Breeding 15(2):193–203. doi:10.1007/s11032-004-5042-1

    Article  CAS  Google Scholar 

  • Bhattacharyya S, Datta S, Mallick B, Dhar P, Ghosh S (2010) Lutein content and in vitro antioxidant activity of different cultivars of Indian marigold flower (Tagetes patula L.) extracts. J Agric Food Chem 58(14):8259–8264. doi:10.1021/jF101262e

    Article  PubMed  CAS  Google Scholar 

  • Busi MV, Gomez-Lobato ME, Rius SP, Turowski VR, Casati P, Zabaleta EJ, Gomez-Casati DF, Araya A (2011) Effect of mitochondrial dysfunction on carbon metabolism and gene expression in flower tissues of Arabidopsis thaliana. Mol Plant 4(1):127–143. doi:10.1093/mp/ssq065

    Article  PubMed  CAS  Google Scholar 

  • Clements JC, Wilson J, Sweetingham MW, Quealy J, Francis G (2012) Male sterility in three crop Lupinus species. Plant Breeding 131(1):155–163. doi:10.1111/j.1439-0523.2011.01903.x

    Article  Google Scholar 

  • Dafni A, Maués MM (1998) A rapid and simple procedure to determine stigma receptivity. Sex Plant Reprod 11:177–180

    Article  Google Scholar 

  • Daniell H (2002) Molecular strategies for gene containment in transgenic crops. Nat Biotechnol 20(6):581–586. doi:10.1038/nbt0602-581

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Daskalov S, Mihailov L (1988) A new method for hybrid seed production based on cytoplasmic male sterility combined with a lethal gene and a female sterile pollenizer in Capsicum annuum L. Theor Appl Genet 76(4):530–532. doi:10.1007/BF00260902

    Article  PubMed  CAS  Google Scholar 

  • Goetz M, Godt DE, Guivarc’h A, Kahmann U, Chriqui D, Roitsch T (2001) Induction of male sterility in plants by metabolic engineering of the carbohydrate supply. Proc Natl Acad Sci 98(11):6522–6527. doi:10.1073/pnas.091097998

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gutierres S, Sabar M, Lelandais C, Chetrit P, Diolez P, Degand H, Boutry M, Vedel F, Kouchikovsky YD, Paepe RD (1997) Lack of mitochondrial and nuclear-encoded subunits of complex I and alteration of the respiratory chain in Nicotiana sylvestris mitochondrial deletion mutants. Proc Natl Acad Sci 94(7):3436–3441

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hayashi M, Ujiie A, Serizawa H, Sassa H, Kakui H, Oda T, Koba T (2011) Development of SCAR and CAPS markers linked to a recessive male sterility gene in lettuce (Lactuca sativa L.). Euphytica 180(3):429–436. doi:10.1007/s10681-011-0417-y

    Article  Google Scholar 

  • He YH, Ning GG, Sun YL, Qi YC, Bao MZ (2009) Identification of a SCAR marker linked to a recessive male sterile gene (Tems) and its application in breeding of marigold (Tagetes erecta). Plant Breeding 128(1):92–96. doi:10.1111/j.1439-0523.2008.01536.x

    Article  CAS  Google Scholar 

  • He YH, Ning GG, Sun YL, Hu Y, Zhao XY, Bao MZ (2010) Cytological and mapping analysis of a novel male sterile type resulting from spontaneous floral organ homeotic conversion in marigold (Tagetes erecta L.). Mol Breeding 26(1):19–29. doi:10.1007/s11032-009-9372-x

    Article  CAS  Google Scholar 

  • Horn R, Köhler RH, Zetsche K (1991) A mitochondrial 16 kDa protein is associated with cytoplasmic male sterility in sunflower. Plant Mol Biol 17(1):29–36. doi:10.1007/BF00036803

    Article  PubMed  CAS  Google Scholar 

  • Ikeda TM, Tsunewaki K (1996) Deficiency of cox1 gene expression in wheat plants with Aegilops columnaris cytoplasm. Curr Genet 30(6):509–514. doi:10.1007/s002940050163

    Article  PubMed  CAS  Google Scholar 

  • Leclercq P (1969) Une sterilite male cytoplasmique chez le tournesol. Ann Amelior Plantes 19(2):99–106

    Google Scholar 

  • Leduc N, Monnier M, Douglas GC (1990) Germination of trinucleated pollen: formulation of a new medium for Capsella bursa-pastoris. Sex Plant Reprod 3(4):228–235. doi:10.1007/BF00202880

    Article  Google Scholar 

  • Leino M, Teixeira R, Landgren M, Glimelius K (2003) Brassica napus lines with rearranged Arabidopsis mitochondria display CMS and a range of developmental aberrations. Theor Appl Genet 106:1156–1163. doi:10.1007/s00122-002-1167-y

    PubMed  CAS  Google Scholar 

  • Li N, Zhang DS, Liu HS, Yin CS, Xx Li, Wq Liang, Yuan Z, Xu B, Chu HW, Wang J, Wen TQ, Huang H, Luo D, Ma H, Zhang DB (2006) The rice tapetum degeneration retardation gene is required for tapetum degradation and anther development. Plant Cell Online 18(11):2999–3014. doi:10.1105/tpc.106.044107

    Article  CAS  Google Scholar 

  • Li F, Chen S, Chen F, Teng N, Fang W, Zhang F, Deng Y (2010) Anther wall development, microsporogenesis and microgametogenesis in male fertile and sterile chrysanthemum (Chrysanthemum morifolium Ramat., Asteraceae). Sci Hortic 126:261–267

    Article  CAS  Google Scholar 

  • Li H, Yuan Z, Vizcay-Barrena G, Yang C, Liang W, Zong J, Wilson ZA, Zhang D (2011) PERSISTENT TAPETAL CELL1 encodes a PHD-finger protein that is required for tapetal cell death and pollen development in rice. Plant Physiol 156(2):615–630. doi:10.1104/pp.111.175760

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Linke B, Börner T (2005) Mitochondrial effects on flower and pollen development. Mitochondrion 5(6):389–402. doi:10.1016/j.mito.2005.10.001

    Article  PubMed  CAS  Google Scholar 

  • Liu YT, Chen ZS, Hong CY (2011) Cadmium-induced physiological response and antioxidant enzyme changes in the novel cadmium accumulator, Tagetes patula. J Hazard Mater 189(3):724–731. doi:10.1016/j.jhazmat.2011.03.032

    Article  PubMed  CAS  Google Scholar 

  • Lou XY, Hu QS, Bao MZ, Ye YM (2010) Analysis of combining ability of two-types of male sterile and four restorer lines of Zinnia elegans. Euphytica 174(1):91–103. doi:10.1007/s10681-010-0143-x

    Article  Google Scholar 

  • Lou XY, Lu TT, Li MJ, Pang RH, Ye YM, Bao MZ (2011) Combining ability among male sterile two-type and restorer lines of Zinnia elegans and implications for the breeding of this ornamental species. Sci Hortic 129(4):862–868. doi:10.1016/j.scienta.2011.05.025

    Article  Google Scholar 

  • Malik M, Vyas P, Rangaswamy NS, Shivanna KR (1999) Development of two new cytoplasmic male-sterile lines in Brassica juncea through wide hybridization. Plant Breeding 118(1):75–78. doi:10.1046/j.1439-0523.1999.118001075.x

    Article  Google Scholar 

  • Mráz P, Chrtek J, Šingliarová B (2009) Geographical parthenogenesis, genome size variation and pollen production in the arctic-alpine species Hieracium alpinum. Bot Helv 119(1):41–51. doi:10.1007/s00035-009-0055-3

    Article  Google Scholar 

  • Napoli C, Lemieux C, Jorgensen R (1990) Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell Online 2(4):279–289

    Article  CAS  Google Scholar 

  • Parish RW, Li SF (2010) Death of a tapetum: a programme of developmental altruism. Plant Sci 178(2):73–89. doi:10.1016/j.plantsci.2009.11.001

    Article  CAS  Google Scholar 

  • Piffanelli P, Ross JHE, Murphy DJ (1998) Biogenesis and function of the lipidic structures of pollen grains. Sex Plant Reprod 11(2):65–80. doi:10.1007/s004970050122

    Article  CAS  Google Scholar 

  • Qi YC, Ye YM, Liu GF, Bao MZ (2005) The establishment of efficient regeneration system for different genotypes of Tagetes patula L. Scientia Agricultura Sinica 38(7):1414–1417

    CAS  Google Scholar 

  • Reňák D, Dupl’áková N, Honys D (2012) Wide-scale screening of T-DNA lines for transcription factor genes affecting male gametophyte development in Arabidopsis. Sex Plant Reprod 25(1):39–60. doi:10.1007/s00497-011-0178-8

    Article  PubMed  Google Scholar 

  • Shi J, Tan H, Yu XH, Liu Y, Liang W, Ranathunge K, Franke RB, Schreiber L, Wang Y, Kai G, Shanklin J, Ma H, Zhang D (2011) Defective pollen wall is required for anther and microspore development in rice and encodes a fatty acyl carrier protein reductase. Plant Cell 23(6):2225–2246. doi:10.1105/tpc.111.087528

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sun M (1987) Genetics of gynodioecy in Hawaiian Bidens (Asteraceae). Heredity 59:327–336. doi:10.1038/hdy.1987.139

    Article  Google Scholar 

  • Teixeira RT (2005) Modified sucrose, starch, and ATP levels in two alloplasmic male-sterile lines of B. napus. J Exp Bot 56(414):1245–1253. doi:10.1093/jxb/eri120

    Article  PubMed  CAS  Google Scholar 

  • Uchida W, Matsunaga S, Sugiyama R, Kazama Y, Kawano S (2003) Morphological development of anthers induced by the dimorphic smut fungus Microbotryum violaceum in female flowers of the dioecious plant Silene latifolia. Planta 218(2):240–248. doi:10.1007/s00425-003-1110-8

    Article  PubMed  CAS  Google Scholar 

  • van der Hulst RGM, Meirmans P, van Tienderen PH, van Damme JMM (2004) Nuclear-Cytoplasmic male-sterility in diploid dandelions. Heredity 93(1):43–50. doi:10.1038/sj.hdy.6800478

    Article  PubMed  Google Scholar 

  • Vranceanu VA, Stoenescu FM (1971) Pollen fertility restorer gene from cultivated sunflower (Helianthus annuus L.). Euphytica 20(4):536–541. doi:10.1007/BF00034209

    Google Scholar 

  • Ye YM, Hu QS, Chen TH, Bao MZ (2008) Male sterile lines of Zinnia elegans and their cytological observations. Agric Sci Chin 7(4):423–431. doi:10.1016/s1671-2927(08)60085-1

    Article  Google Scholar 

  • Zhang P, Zeng L, Su YX, Gong XW, Wang XS (2011) Karyotype studies on Tagetes erecta L. and Tagetes patula L. Afr J Biotechnol 10(72):16138–16144. doi:10.5897/AJB11.1994

    Google Scholar 

  • Zhang C, Norris-Caneda KH, Rottmann WH, Gulledge JE, Chang S, Kwan BYH, Thomas AM, Mandel LC, Kothera RT, Victor AD, Pearson L, Hinchee MAW (2012) Control of pollen-mediated gene flow in transgenic trees. Plant Physiol 159 (4):1319–1334. doi:http://dx.doiorg/10.1104/pp.112.197228

Download references

Acknowledgments

This research was supported by grants from National Natural Science Foundation of China (31201647) and the Fundamental Research Funds for the Central Universities (2013PY081). We thank all past and present colleagues in our lab for constructive discussion and technical support and Dr. Alex McCormac (Mambo-Tox Ltd., UK) for critical editing of the manuscript. Ye Ai and Yanhong He contributed equally to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manzhu Bao.

Additional information

Ye Ai and Yanhong He contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ai, Y., He, Y., Hu, Y. et al. Characterization of a novel male sterile mutant of Tagetes patula induced by heat shock. Euphytica 200, 159–173 (2014). https://doi.org/10.1007/s10681-014-1116-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-014-1116-2

Keywords

Navigation