Skip to main content
Log in

On invariant notions of Segre varieties in binary projective spaces

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

Invariant notions of a class of Segre varieties \({\mathcal{S}_{(m)}(2)}\) of PG(2m − 1, 2) that are direct products of m copies of PG(1, 2), m being any positive integer, are established and studied. We first demonstrate that there exists a hyperbolic quadric that contains \({\mathcal{S}_{(m)}(2)}\) and is invariant under its projective stabiliser group \({G_{{\mathcal{S}}_{(m)}(2)}}\) . By embedding PG(2m − 1, 2) into PG(2m − 1, 4), a basis of the latter space is constructed that is invariant under \({G_{{\mathcal{S}}_{(m)}(2)}}\) as well. Such a basis can be split into two subsets whose spans are either real or complex-conjugate subspaces according as m is even or odd. In the latter case, these spans can, in addition, be viewed as indicator sets of a \({G_{{\mathcal{S}}_{(m)}(2)}}\) -invariant geometric spread of lines of PG(2m − 1, 2). This spread is also related with a \({G_{{\mathcal{S}}_{(m)}(2)}}\) -invariant non-singular Hermitian variety. The case m = 3 is examined in detail to illustrate the theory. Here, the lines of the invariant spread are found to fall into four distinct orbits under \({G_{{\mathcal{S}}_{(m)}(2)}}\) , while the points of PG(7, 2) form five orbits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abo H., Ottaviani G., Peterson Ch.: Induction for secant varieties of Segre varieties. Trans. Am. Math. Soc 361(2), 767–792 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baer R.: Partitionen abelscher Gruppen. Arch. Math. (Basel) 14, 73–83 (1963)

    MathSciNet  MATH  Google Scholar 

  3. Benz W., Samaga H.-J., Schaeffer H.: Cross ratios and a unifying treatment of von Staudt’s notion of reeller Zug. In: Plaumann, P., Strambach, K. (eds) Geometry—von Staudt’s Point of View., pp. 127–150. Reidel, Dordrecht (1981)

    Google Scholar 

  4. Bichara A., Misfeld J., Zanella C.: Primes and order structure in the product spaces. J. Geom 58(1–2), 53–60 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Blunck A., Herzer A.: Kettengeometrien—Eine Einführung. Shaker Verlag, Aachen (2005)

    MATH  Google Scholar 

  6. Brouwer A.E., Cohen A.M., Hall J.I., Wilbrink H.A.: Near polygons and Fischer spaces. Geom. Dedicata 49(3), 349–368 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  7. Burau W.: Mehrdimensionale projektive und höhere Geometrie. Deutscher Verlag der Wissenschaften, Berlin (1961)

    MATH  Google Scholar 

  8. Comon P., ten Berge J.M.F., De Lathauwer L., Castaing J.: Generic and typical ranks of multi-way arrays. Linear Algebr. Appl 430(11–12), 2997–3007 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dieudonné J.A.: La Géométrie des Groupes Classiques, 3rd edn. Springer, New York (1971)

    MATH  Google Scholar 

  10. Ðoković D.Ž., Osterloh A.: On polynomial invariants of several qubits. J. Math. Phys. 50(3), 033509-1–033509-23 (2009).

    Google Scholar 

  11. Dye R.H.: Maximal subgroups of finite orthogonal groups stabilizing spreads of lines. J. Lond. Math. Soc. (2) 33(2), 279–293 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  12. Gel’fand I.M., Kapranov M.M., Zelevinsky A.V.: Discriminants, resultants, and multidimensional determinants. In: Mathematics: Theory and Applications. Birkhäuser Boston Inc., Boston (1994).

  13. Glynn D.G.: The modular counterparts of Cayley’s hyperdeterminants. Bull Aust. Math. Soc 57(3), 479–492 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. Glynn D.G., Gulliver T.A., Maks J.G., Gupta M.K.: The geometry of additive quantum codes. http://www.maths.adelaide.edu.au/rey.casse/DavidGlynn/QMonoDraft.pdf (2006). Retrieved May 2010.

  15. Heydari H.: Geometrical structure of entangled states and the secant variety. Quant. Inform. Process 7(1), 43–50 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hirschfeld J.W.P.: Projective Geometries over Finite Fields, 2nd edn. Clarendon Press, Oxford (1998)

    MATH  Google Scholar 

  17. Hirschfeld J.W.P., Thas J.A.: General Galois Geometries. Oxford University Press, Oxford (1991)

    MATH  Google Scholar 

  18. Kostrikin A.I., Manin Yu.I.: Linear algebra and geometry. In: Algebra, Logic and Applications, vol. 1. Gordon and Breach Science Publishers, New York (1989).

  19. Lévay P., Vrana P.: Three fermions with six single-particle states can be entangled in two inequivalent ways. Phys. Rev. A 78, 022329-1–022329-10 (2008). (arXiv:0806.4076).

    Google Scholar 

  20. Marušič D., Pisanski T., Wilson S.: The genus of the GRAY graph is 7. European J. Combin 26(3–4), 377–385 (2005)

    MathSciNet  MATH  Google Scholar 

  21. Polster B.: A Geometrical Picture Book. Universitext. Springer, New York (1998)

    Book  Google Scholar 

  22. Ronan M.A.: Embeddings and hyperplanes of discrete geometries. European J. Combin 8(2), 179–185 (1987)

    MathSciNet  MATH  Google Scholar 

  23. Segre B.: Teoria di Galois, fibrazioni proiettive e geometrie non desarguesiane. Ann. Math. Pura Appl. (4) 64, 1–76 (1964).

    Article  MathSciNet  MATH  Google Scholar 

  24. Shaw R.: The polynomial degrees of Grassmann and Segre varieties over GF(2). Discr. Math 308(5–6), 872–879 (2008)

    Article  MATH  Google Scholar 

  25. Shaw R., Gordon N.A.: The cubic Segre variety in PG(5, 2). Des. Codes Cryptogr 51(2), 141–156 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Havlicek.

Additional information

Communicated by J. W. P. Hirschfeld.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Havlicek, H., Odehnal, B. & Saniga, M. On invariant notions of Segre varieties in binary projective spaces. Des. Codes Cryptogr. 62, 343–356 (2012). https://doi.org/10.1007/s10623-011-9525-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-011-9525-x

Keywords

Mathematics Subject Classification (2000)

Navigation