Skip to main content

Advertisement

Log in

Serum prolactin levels are positively associated with mammographic density in postmenopausal women

  • Epidemiology
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Background

Prolactin is a polypeptide hormone that promotes normal breast proliferation and differentiation, but it is also implicated in the development and growth of mammary tumors. Mammographic density is a strong, independent predictor of breast cancer and, therefore, a potential surrogate indicator of breast cancer risk.

Methods

To test the hypothesis that serum prolactin is positively related to mammographic density, we conducted a cross-sectional analysis of baseline data from the Postmenopausal Estrogen/Progestin Interventions (PEPI) Mammographic Density Study. Based on prior work, we further hypothesized that this association would be apparent only in women who had not recently used postmenopausal hormone therapy (HT).

Results

In linear regression models adjusted for age, body mass index, race, smoking, alcohol use, parity and physical activity, among the 400 women who were not recent users of HT, prolactin was positively and statistically significantly associated with mammographic density (Beta log base 2 prolactin 0.0369 [95% CI: 0.0094–0.0645]. Thus, for each doubling of serum prolactin, there was an absolute increase in mammographic density of 3.69%. Additional adjustment for serum levels of estradiol, progesterone, sex hormone binding globulin and age at first pregnancy did not affect this result. There was no association between prolactin and mammographic density among the 169 participants who had recently used HT.

Conclusion

The correspondence between higher prolactin and higher mammographic density is consistent with prolactin’s mitogenic properties and the associations between prolactin and breast tumor promotion. These results support the thesis that prolactin deserves investigation as a target for breast cancer risk reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Wolfe JN, Saftlas AF, Salane M (1987) Mammographic parenchymal patterns and quantitative evaluation of mammographic densities: a case–control study. Am J Radiol 148:1087–1092

    CAS  Google Scholar 

  2. Boyd NF, Byng JW, Jong RA et al (1995) Quantitative classification of mammographic densities and breast cancer risk: results from the Canadian National Breast Screening Study. J Natl Cancer Inst 87:670–675

    Article  PubMed  CAS  Google Scholar 

  3. Ursin G, Astrahan MA, Salane M et al (1998) The detection of changes in mammographic densities. Cancer Epidemiol Biomarkers Prev 7:43–47

    PubMed  CAS  Google Scholar 

  4. Saftlas AF, Szklo M (1987) Mammographic parenchymal patterns and breast cancer risk. Epidemiol Rev 9:146–174

    PubMed  CAS  Google Scholar 

  5. Oza AM, Boyd NF (1993) Mammographic parenchymal patterns: a marker of breast cancer risk. Epidemiol Rev 15:196–208

    PubMed  CAS  Google Scholar 

  6. Warner E, Lockwood G, Tritchler D, Boyd NF (1992) The risk of breast cancer associated with mammographic parenchymal patterns: a meta-analysis of the published literature to examine the effect of method of classification. Cancer Detect Prev 16:67–72

    PubMed  CAS  Google Scholar 

  7. Boyd NF, Lockwood GA, Martin LG et al (1998) Mammographic densities and breast cancer risk. Breast Dis 10:126–133

    Google Scholar 

  8. Byrne C, Schairer C, Wolfe J et al (1995) Mammographic features and breast cancer risk: effects with time, age and menopause status. J Natl Cancer Inst 87:1622–1629

    Article  PubMed  CAS  Google Scholar 

  9. Ursin G, Ma H, Wu AH et al (2003) Mammographic density and breast cancer in three ethnic groups. Cancer Epidemiol Biomarkers Prev 12:332–338

    PubMed  Google Scholar 

  10. Bright RA, Morrison AS, Brisson J et al (1988) Relationship between mammographic and histologic features of breast tissue in women with benign biopsies. Cancer 61:266–271

    Article  PubMed  CAS  Google Scholar 

  11. Urbanski S, Jensen HM, Cooke G et al (1988) The association of histological and radiological indicators of breast cancer risk. Br J Cancer 58:474–479

    PubMed  CAS  Google Scholar 

  12. Bartow SA, Pathak DR, Mettler FA (1990) Radiographic microcalcification and parenchymal pattern as indicators of histologic “high-risk” benign breast disease. Cancer 66:1721–1725

    Article  PubMed  CAS  Google Scholar 

  13. Boyd NF, Jensen HM, Cooke G, Han HL (1992) Relationship between mammographic and histological risk factors for breast cancer. J Natl Cancer Inst 84:1170–1195

    Article  PubMed  CAS  Google Scholar 

  14. Wellings SR, Wolfe JN (1978) Correlative studies of the histological and radiographic appearance of the breast parenchyma. Radiology 129:299–306

    PubMed  CAS  Google Scholar 

  15. Fisher ER, Palekar A, Kim WS, Redmond C (1978) The histopathology of mammographic patterns. Am J Clin Pathol 69:421–426

    PubMed  CAS  Google Scholar 

  16. Moskowitz M, Gartside P, McLaughlin C (1980) Mammographic patterns as markers for high-risk benign breast disease and incident cancers. Radiology 134:293–295

    PubMed  CAS  Google Scholar 

  17. Arthur JE, Ellis IO, Flowers C, Roebuck E, Elston CW, Blamey RW (1990) The relationship of “high risk” mammographic patterns to histological risk factors for development of cancer in the human breast. Br Radiol 63:845–849

    Article  CAS  Google Scholar 

  18. Pike MC, Bernstein L, Spicer DV (1993) Exogenous hormones and breast cancer risk. In: Niederhuber JE (ed) Current therapy in oncology, Mosbey, St. Louis

  19. Pike MC, Spicer DV, Dahmoush L, Press MF (1993) Estrogens, progestogens, normal breast cell proliferation, and breast cancer risk. Epidemiol Rev 15:17–35

    PubMed  CAS  Google Scholar 

  20. Vonderhaar BK. (1998) Prolactin: the forgotten hormone of human breast cancer. Pharmacol Ther 79:169–178

    Article  PubMed  CAS  Google Scholar 

  21. Goffin V, Binart N, Touraine P, Kelly PA (2002) Prolactin: the new biology of an old hormone. Annu Rev Physiol 64:47–67

    Article  PubMed  CAS  Google Scholar 

  22. Harris J, Stanford PM, Oakes SR, Ormandy CJ (2004) Prolactin and the prolactin receptor: new targets of an old hormone. Ann Med 36:414–425

    Article  PubMed  CAS  Google Scholar 

  23. Clevenger CV, Furth PA, Hankinson SE, Schuler LA (2003) The role of prolactin in mammary carcinoma. Endocr Rev 24:1–27

    Article  PubMed  CAS  Google Scholar 

  24. Hankinson SE, Willet WC, Michaud DS (1999) Plasma prolactin levels and subsequent risk of breast cancer in postmenopausal women. J Natl Cancer I 91:629–634

    Article  CAS  Google Scholar 

  25. Tworoger SS, Sluss P, Hankinson SE (2006) Association between plasma prolactin concentrations and risk of breast cancer among predominately premenopausal women. Cancer Res 66:2476–2482

    Article  PubMed  CAS  Google Scholar 

  26. Greendale GA, Reboussin BA, Slone S et al (2003) Postmenopausal hormone therapy and change in mammographic density. J Natl Cancer Inst 95:30–37

    Article  PubMed  CAS  Google Scholar 

  27. Greendale GA, Palla SL, Ursin G et al (2005) The association of endogenous sex steroids and sex steroids binding proteins with mammographic density: results from the postmenopausal estrogen/progestin interventions mammographic density study. Am J Epidemiol 162:826–834

    Article  PubMed  Google Scholar 

  28. The PEPI Investigators (1995) Rationale, design and conduct of the PEPI Trial. Controlled Clin Trials 16:3S-19S

    Article  Google Scholar 

  29. Greendale GA, Bodin-Dunn L, Ingles S, Hail R, Barrett-Connor E (1996) Leisure, home and occupational physical activity and cardiovascular risk factors in postmenopausal women: the postmenopausal estrogen/progestins intervention (PEPI) study. Arch Intern Med 156:418–424

    Article  PubMed  CAS  Google Scholar 

  30. Greendale GA, James MK, Espeland M, Barrett-Connor E (1997) Can we measure postmenopausal estrogen/progestin use? The postmenopausal estrogen/progestin interventions trial. Am J Epidemiol 146:763–770

    PubMed  CAS  Google Scholar 

  31. Block G, Hartman AM, Dresser CM et al (1986) A data-based approach to diet questionnaire design and testing. Am J Epidemiol 124:453–469

    PubMed  CAS  Google Scholar 

  32. Anderson DC, Hopper BR, Lasley BL, Yen SS (1976) A simple method for the assay of eight steroids in small volumes of plasma. Steroids 28:179

    Article  PubMed  CAS  Google Scholar 

  33. Tremblay RR, Dube JY (1974) Plasma concentrations of free and non-TeBG bound testosterone in women on oral contraceptives. Contraception 10:599

    Article  PubMed  CAS  Google Scholar 

  34. Greendale GA, Reboussin BA, Sie A et al (1999) Effects of estrogen and estrogen–progestin on mammographic parenchymal density. Ann Intern Med 130:262–269

    PubMed  CAS  Google Scholar 

  35. Byng JW, Boyd NF, Little L et al (1996) Symmetry of projection in the quantitative analyses of mammographic images. Eur J Cancer Prev 5:319–327

    Article  PubMed  CAS  Google Scholar 

  36. Crandall C, Palla S, Reboussin BA, Ursin G, Greendale G (2005) Positive association between mammographic breast density and bone mineral density in the Postmenopausal Estrogen/Progestin Interventions Study. Breast Cancer Res 7:R922–R928

    Article  PubMed  CAS  Google Scholar 

  37. Wang DY, de Stavola BL, Bulbrook RD et al (1988) The permanent effect of reproductive events on blood prolactin levels and its relation to breast cancer risk: a population study of postmenopausal women. Eur J Cancer Clin Oncol 24:1225–1231

    Article  PubMed  CAS  Google Scholar 

  38. Heuson JC, Coune A, Staquet M (1972) Clinical trial of 2-BR-alpha-ergocryptine (CB154) in advanced breast cancer. Eur J Cancer 8:155–156

    Google Scholar 

  39. Peyrat JP, Vennin PH, Bonneterre J et al (1984) Effect of bromocriptine treatment on prolactin and steroid and steroid receptor levels in human breast cancer. Eur J Cancer Clin Oncol 20:1363–1367

    Article  PubMed  CAS  Google Scholar 

  40. Gill S, Peston D, Vonderhaar BK, Shousha S (2001) Expression of prolactin receptors in normal, benign, and malignant breast tissue: an immunohistological study. J Clin Pathol 54:956–960

    PubMed  CAS  Google Scholar 

  41. Mertani HC, Garcia-Cabellero T, Lambert A et al (1998) Cellular expression of growth hormone and prolactin receptors in human breast disorders. Int J Cancer 79:202–211

    Article  PubMed  CAS  Google Scholar 

  42. Reynolds C, Montone KT, Powell CM, Tomaszewski JE, Clevenger CV (1997) Expression of prolactin and its receptor in human breast carcinoma. Endocrinology 138:5555–5559

    Article  PubMed  CAS  Google Scholar 

  43. Touraine P, Martini JF, Zafrani B et al (1998) Increased expression of prolactin gene assessed by quantitative polymerase chain reaction in human breast tumors versus normal breast tissues. J Clin Endocr Metab 83:667–674

    Article  PubMed  CAS  Google Scholar 

  44. Ingram DM, Nortage EM, Roberts AN (1990) Prolactin and breast cancer risk. Med J Aust 153:469–473

    PubMed  CAS  Google Scholar 

  45. Boyd NF, Stone J, Martin LJ et al (2002) The association of breast mitogens with mammographic densities. Br J Cancer 87:876–882

    Article  PubMed  CAS  Google Scholar 

  46. Tamimi RM, Hankinson SE, Colditz GA, Byrne C (2005) Endogenous sex hormone levels and mammgraphic density among postmenopausal women. Cancer Epidem Biomar 14:2641–2647

    Article  CAS  Google Scholar 

  47. Hankinson SE, Willet WC, Manson JE et al (1995) Alcohol, height, and adiposity in relation to estrogen and prolactin levels in postmenopausal women. J Natl Cancer I 87:1297–1302

    Article  CAS  Google Scholar 

  48. Koenig KL, Toniolo P, Bruning PF et al (1993) Reliability of serum prolactin measurements in women. Cancer Epidem Biomar 2:411–414

    CAS  Google Scholar 

  49. Muti P, Trevisan M, Micheli A et al (1996) Reliability of serum hormones in premenopausal and postmenopausal women over a one-year period. Cancer Epidem Biomar 5:917–922

    CAS  Google Scholar 

  50. Ehara Y, Siler TM, Yen SS (1976) Effects of large doses of estrogen on prolactin and growth hormone release. Am J Obstet Gynecol 125:455–458

    PubMed  CAS  Google Scholar 

  51. Yen SS, Ehara Y, Siler TM Augmentation of prolactin secretion by estrogen in hypogonadal women. J Clin Invest 53:652–655

  52. Chang RJ, Davidson BJ, Carlson HE, Judd HL (1982) Circadian pattern of prolactin secretion in postmenopausal women receiving estrogen with or without progestin. Am J Obstet Gynec 144:402–407

    PubMed  CAS  Google Scholar 

  53. Yen SS, Lasley B, Wang C, Ehara Y (1975) Steroid modulation of the hypothalamic-pituitary system in the secretion of reproductive hormones. J Steroid Biochem 6:1047–1053

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the women who generously participated in the Postmenopausal Estrogen/Progestin Intervention Trial.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gail A. Greendale.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greendale, G.A., Huang, MH., Ursin, G. et al. Serum prolactin levels are positively associated with mammographic density in postmenopausal women. Breast Cancer Res Treat 105, 337–346 (2007). https://doi.org/10.1007/s10549-006-9454-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-006-9454-y

Keywords

Navigation