Skip to main content
Log in

c-Jun N-terminal kinase-dependent apoptotic photocytotoxicity of solvent exchange-prepared curcumin nanoparticles

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Indian spice curcumin is known for its anticancer properties, but the anticancer mechanisms of nanoparticulate curcumin have not been completely elucidated. We here investigated the in vitro anticancer effect of blue light (470 nm, 1 W)-irradiated curcumin nanoparticles prepared by tetrahydrofuran/water solvent exchange, using U251 glioma, B16 melanoma, and H460 lung cancer cells as targets. The size of curcumin nanocrystals was approximately 250 nm, while photoexcitation induced their oxidation and partial agglomeration. Although cell membrane in the absence of light was almost impermeable to curcumin nanoparticles, photoexcitation stimulated their internalization. While irradiation with blue light (1–8 min) or nanocurcumin (1.25–10 μg/ml) alone was only marginally toxic to tumor cells, photoexcited nanocurcumin displayed a significant cytotoxicity depending both on the irradiation time and nanocurcumin concentration. Photoexcited nanocurcumin induced phosphorylation of c-Jun N-terminal kinase (JNK), mitochondrial depolarization, caspase-3 activation, and cleavage of poly (ADP-ribose) polymerase, indicating apoptotic cell death. Accordingly, pharmacologial inhibition of JNK and caspase activity rescued cancer cells from photoexcited nanocurcumin. On the other hand, antioxidant treatment did not reduce photocytotoxicity of nanocurcumin, arguing against the involvement of oxidative stress. By demonstrating the ability of photoexcited nanocurcumin to induce oxidative-stress independent, JNK- and caspase-dependent apoptosis, our results support its further investigation in cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • B. B. Aggarwal, C. Sundaram, N. Malani, H. Ichikawa, Curcumin: the Indian solid gold. Adv. Exp. Med. Biol. 595, 1–75 (2007)

    Article  Google Scholar 

  • P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel, et al., Photodynamic therapy of cancer: an update. CA Cancer J Clin 61, 250–281 (2011)

    Article  Google Scholar 

  • A. M. Alizadeh, M. Khaniki, S. Azizian, M. A. Mohaghgheghi, M. Sadeghizadeh, F. Najafi, Chemoprevention of azoxymethane-initiated colon cancer in rat by using a novel polymeric nanocarrier–curcumin. Eur. J. Pharmacol. 689, 226–232 (2012)

    Article  Google Scholar 

  • P. Anand, A. B. Kunnumakkara, R. A. Newman, B. B. Aggarwal, Bioavailability of curcumin: problems and promises. Mol. Pharm. 4, 807–818 (2007)

    Article  Google Scholar 

  • I. Baldea, A. G. Filip, Photodynamic therapy in melanoma–an update. J. Physiol. Pharmacol. 63, 109–118 (2012)

    Google Scholar 

  • S. Banerjee, P. Prasad, A. Hussain, I. Khan, P. Kondaiah, A. R. Chakravarty, Remarkable photocytotoxicity of curcumin in HeLa cells in visible light and arresting its degradation on oxovanadium(IV) complex formation. Chem Commun (Camb) 48, 7702–7704 (2012)

    Article  Google Scholar 

  • R. K. Basniwal, R. Khosla, N. Jain, Improving the anticancer activity of curcumin using nanocurcumin dispersion in water. Nutr. Cancer 66, 1015–1022 (2014)

    Article  Google Scholar 

  • H. Bayir, V. E. Kagan, Bench-to-bedside review: mitochondrial injury, oxidative stress and apoptosis–there is nothing more practical than a good theory. Crit. Care 12, 206 (2008)

    Article  Google Scholar 

  • A. Bernd, Visible light and/or UVA offer a strong amplification of the anti-tumor effect of curcumin. Phytochem. Rev. 13, 183–189 (2014)

    Article  Google Scholar 

  • Bhawana, R. K. Basniwal, H. S. Buttar, V. K. Jain, N. Jain, Curcumin nanoparticles: preparation, characterization, and antimicrobial study. J. Agric. Food Chem. 59, 2056–2061 (2011)

    Article  Google Scholar 

  • S. Buss, J. Dobra, K. Goerg, S. Hoffmann, S. Kippenberger, R. Kaufmann, M. Hofmann, A. Bernd, Visible light is a better co-inducer of apoptosis for curcumin-treated human melanoma cells than UVA. PLoS One 8, e79748 (2013)

    Article  Google Scholar 

  • P. Y. Chang, S. F. Peng, C. Y. Lee, C. C. Lu, S. C. Tsai, T. M. Shieh, T. S. Wu, M. G. Tu, M. Y. Chen, J. S. Yang, Curcumin-loaded nanoparticles induce apoptotic cell death through regulation of the function of MDR1 and reactive oxygen species in cisplatin-resistant CAR human oral cancer cells. Int. J. Oncol. 43, 1141–1150 (2013)

    Google Scholar 

  • Y. R. Chen, T. H. Tan, Inhibition of the c-Jun N-terminal kinase (JNK) signaling pathway by curcumin. Oncogene 17, 173–178 (1998)

    Article  Google Scholar 

  • C. F. Chignell, P. Bilski, K. J. Reszka, A. G. Motten, R. H. Sik, T. A. Dahl, Spectral and photochemical properties of curcumin. Photochem. Photobiol. 59, 295–302 (1994)

    Article  Google Scholar 

  • J. V. Crivello, U. Bulut, Curcumin: a naturally occurring long-wavelength photosensitizer for diaryliodonium salts. Journal of Polymer Science, Part A: Polymer Chemistry 43, 5217–5231 (2005)

    Article  Google Scholar 

  • M. Degli Esposti, Measuring mitochondrial reactive oxygen species. Methods 26, 335–340 (2002)

    Article  Google Scholar 

  • S. Dev, P. Prabhakaran, L. Filgueira, K. S. Iyer, C. L. Raston, Microfluidic fabrication of cationic curcumin nanoparticles as an anti-cancer agent. Nanoscale 4, 2575–2579 (2012)

    Article  Google Scholar 

  • D. N. Dhanasekaran, E. P. Reddy, JNK signaling in apoptosis. Oncogene 27, 6245–6251 (2008)

    Article  Google Scholar 

  • J. Duan, Y. Zhang, S. Han, Y. Chen, B. Li, M. Liao, W. Chen, X. Deng, J. Zhao, B. Huang, Synthesis and in vitro/in vivo anti-cancer evaluation of curcumin-loaded chitosan/poly(butyl cyanoacrylate) nanoparticles. Int. J. Pharm. 400, 211–220 (2010)

    Article  Google Scholar 

  • J. Dujic, S. Kippenberger, A. Ramirez-Bosca, J. Diaz-Alperi, J. Bereiter-Hahn, R. Kaufmann, A. Bernd, M. Hofmann, Curcumin in combination with visible light inhibits tumor growth in a xenograft tumor model. Int. J. Cancer 124, 1422–1428 (2009)

    Article  Google Scholar 

  • A. Duvoix, F. Morceau, S. Delhalle, M. Schmitz, M. Schnekenburger, M. M. Galteau, M. Dicato, M. Diederich, Induction of apoptosis by curcumin: mediation by glutathione S-transferase P1-1 inhibition. Biochem. Pharmacol. 66, 1475–1483 (2003)

    Article  Google Scholar 

  • X. Fan, C. Zhang, D. B. Liu, J. Yan, H. P. Liang, The clinical applications of curcumin: current state and the future. Curr. Pharm. Des. 19, 2011–2031 (2013)

    Google Scholar 

  • N. Festjens, T. Vanden Berghe, S. Cornelis, P. Vandenabeele, RIP1, a kinase on the crossroads of a cell's decision to live or die. Cell Death Differ. 14, 400–410 (2007)

    Article  Google Scholar 

  • S. C. Gupta, S. Prasad, J. H. Kim, S. Patchva, L. J. Webb, I. K. Priyadarsini, B. B. Aggarwal, Multitargeting by curcumin as revealed by molecular interaction studies. Nat. Prod. Rep. 28, 1937–1955 (2011)

    Article  Google Scholar 

  • M. Heger, R. F. van Golen, M. Broekgaarden, M. C. Michel, The molecular basis for the pharmacokinetics and pharmacodynamics of curcumin and its metabolites in relation to cancer. Pharmacol. Rev. 66, 222–307 (2014)

    Article  Google Scholar 

  • N. R. Jana, P. Dikshit, A. Goswami, N. Nukina, Inhibition of proteasomal function by curcumin induces apoptosis through mitochondrial pathway. J. Biol. Chem. 279, 11680–11685 (2004)

    Article  Google Scholar 

  • M. C. Jiang, H. F. Yang-Yen, J. K. Lin, J. J. Yen, Differential regulation of p53, c-Myc, bcl-2 and Bax protein expression during apoptosis induced by widely divergent stimuli in human hepatoblastoma cells. Oncogene 13, 609–616 (1996)

    Google Scholar 

  • W. J. Kaiser, L. P. Daley-Bauer, R. J. Thapa, P. Mandal, S. B. Berger, C. Huang, A. Sundararajan, H. Guo, L. Roback, S. H. Speck, et al., RIP1 suppresses innate immune necrotic as well as apoptotic cell death during mammalian parturition. Proc. Natl. Acad. Sci. U. S. A. 111, 7753–7758 (2014)

    Article  Google Scholar 

  • G. N. Kaludjerovic, D. Miljkovic, M. Momcilovic, V. M. Djinovic, M. Mostarica Stojkovic, T. J. Sabo, V. Trajkovic, Novel platinum(IV) complexes induce rapid tumor cell death in vitro. Int. J. Cancer 116, 479–486 (2005)

    Article  Google Scholar 

  • A. Kawczyk-Krupka, A. M. Bugaj, W. Latos, K. Zaremba, A. Sieron, Photodynamic therapy in treatment of cutaneous and choroidal melanoma. Photodiagn. Photodyn. Ther. 10, 503–509 (2013)

    Article  Google Scholar 

  • T. H. Kim, H. H. Jiang, Y. S. Youn, C. W. Park, K. K. Tak, S. Lee, H. Kim, S. Jon, X. Chen, K. C. Lee, Preparation and characterization of water-soluble albumin-bound curcumin nanoparticles with improved antitumor activity. Int. J. Pharm. 403, 285–291 (2011)

    Article  Google Scholar 

  • T. M. Kolev, E. A. Velcheva, B. A. Stamboliyska, M. Spiteller, DFT and experimental studies of the structure and vibrational spectra of curcumin. Int. J. Quantum Chem. 102, 1069–1079 (2005)

    Article  Google Scholar 

  • H. Koon, A. W. Leung, K. K. Yue, N. K. Mak, Photodynamic effect of curcumin on NPC/CNE2 cells. J. Environ. Pathol. Toxicol. Oncol. 25, 205–215 (2006)

    Article  Google Scholar 

  • A. Kunwar, A. Barik, B. Mishra, K. Rathinasamy, R. Pandey, K. I. Priyadarsini, Quantitative cellular uptake, localization and cytotoxicity of curcumin in normal and tumor cells. Biochim. Biophys. Acta 1780, 673–679 (2008)

    Article  Google Scholar 

  • C. D. Lao, M. T.t. Ruffin, D. Normolle, D. D. Heath, S. I. Murray, J. M. Bailey, M. E. Boggs, J. Crowell, C. L. Rock, D. E. Brenner, Dose escalation of a curcuminoid formulation. BMC Complement Altern Med 6, 10 (2006)

  • W. H. Lee, C. Y. Loo, M. Bebawy, F. Luk, R. S. Mason, R. Rohanizadeh, Curcumin and its derivatives: their application in neuropharmacology and neuroscience in the 21st century. Curr. Neuropharmacol. 11, 338–378 (2013)

    Article  Google Scholar 

  • P. Li, D. Nijhawan, I. Budihardjo, S. M. Srinivasula, M. Ahmad, E. S. Alnemri, X. Wang, Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91, 479–489 (1997)

    Article  Google Scholar 

  • J. Li, S. Xiang, Q. Zhang, J. Wu, Q. Tang, J. Zhou, L. Yang, Z. Chen, S. S. Hann, Combination of curcumin and bicalutamide enhanced the growth inhibition of androgen-independent prostate cancer cells through SAPK/JNK and MEK/ERK1/2-mediated targeting NF-kappaB/p65 and MUC1-C. J. Exp. Clin. Cancer Res. 34, 46 (2015)

    Article  Google Scholar 

  • T. Liang, X. Zhang, W. Xue, S. Zhao, X. Zhang, J. Pei, Curcumin induced human gastric cancer BGC-823 cells apoptosis by ROS-mediated ASK1-MKK4-JNK stress signaling pathway. Int. J. Mol. Sci. 15, 15754–15765 (2014)

    Article  Google Scholar 

  • K. J. Lim, S. Bisht, E. E. Bar, A. Maitra, C. G. Eberhart, A polymeric nanoparticle formulation of curcumin inhibits growth, clonogenicity and stem-like fraction in malignant brain tumors. Cancer Biol Ther 11, 464–473 (2011)

    Article  Google Scholar 

  • Z. Markovic, B. Todorovic-Markovic, D. Kleut, N. Nikolic, S. Vranjes-Djuric, M. Misirkic, L. Vucicevic, K. Janjetovic, A. Isakovic, L. Harhaji, et al., The mechanism of cell-damaging reactive oxygen generation by colloidal fullerenes. Biomaterials 28, 5437–5448 (2007)

    Article  Google Scholar 

  • Z. M. Markovic, J. P. Prekodravac, D. D. Tosic, I. D. Holclajtner-Antunovic, M. S. Milosavljevic, M. D. Dramicanin, B. M. Todorovic-Markovic, Facile synthesis of water-soluble curcumin nanocrystals. J Serb Chem Soc 79, 1–11 (2014)

    Article  Google Scholar 

  • N. Mizushima, T. Yoshimori, B. Levine, Methods in mammalian autophagy research. Cell 140, 313–326 (2010)

    Article  Google Scholar 

  • D. E. Moody, The effect of tetrahydrofuran on biological systems: does a hepatotoxic potential exist? Drug Chem. Toxicol. 14, 319–342 (1991)

    Article  Google Scholar 

  • L. Moragoda, R. Jaszewski, A. P. Majumdar, Curcumin induced modulation of cell cycle and apoptosis in gastric and colon cancer cells. Anticancer Res. 21, 873–878 (2001)

    Google Scholar 

  • K. L. Nair, A. K. Thulasidasan, G. Deepa, R. J. Anto, G. S. Kumar, Purely aqueous PLGA nanoparticulate formulations of curcumin exhibit enhanced anticancer activity with dependence on the combination of the carrier. Int. J. Pharm. 425, 44–52 (2012)

    Article  Google Scholar 

  • S. F. Peng, C. Y. Lee, M. J. Hour, S. C. Tsai, D. H. Kuo, F. A. Chen, P. C. Shieh, J. S. Yang, Curcumin-loaded nanoparticles enhance apoptotic cell death of U2OS human osteosarcoma cells through the Akt-bad signaling pathway. Int. J. Oncol. 44, 238–246 (2014)

    Google Scholar 

  • G. Radhakrishna Pillai, A. S. Srivastava, T. I. Hassanein, D. P. Chauhan, E. Carrier, Induction of apoptosis in human lung cancer cells by curcumin. Cancer Lett. 208, 163–170 (2004)

    Article  Google Scholar 

  • N. S. Rejinold, M. Muthunarayanan, K. P. Chennazhi, S. V. Nair, R. Jayakumar, Curcumin loaded fibrinogen nanoparticles for cancer drug delivery. J. Biomed. Nanotechnol. 7, 521–534 (2011)

    Article  Google Scholar 

  • A. P. Ribeiro, A. C. Pavarina, L. N. Dovigo, I. L. Brunetti, V. S. Bagnato, C. E. Vergani, C. A. Costa, Phototoxic effect of curcumin on methicillin-resistant staphylococcus aureus and L929 fibroblasts. Lasers Med. Sci. 28, 391–398 (2013)

    Article  Google Scholar 

  • A. Shehzad, F. Wahid, Y. S. Lee, Curcumin in cancer chemoprevention: molecular targets, pharmacokinetics, bioavailability, and clinical trials. Arch Pharm (Weinheim) 343, 489–499 (2010)

    Article  Google Scholar 

  • M. Shi, Q. Cai, L. Yao, Y. Mao, Y. Ming, G. Ouyang, Antiproliferation and apoptosis induced by curcumin in human ovarian cancer cells. Cell Biol. Int. 30, 221–226 (2006)

    Article  Google Scholar 

  • S. Shishodia, H. M. Amin, R. Lai, B. B. Aggarwal, Curcumin (diferuloylmethane) inhibits constitutive NF-kappaB activation, induces G1/S arrest, suppresses proliferation, and induces apoptosis in mantle cell lymphoma. Biochem. Pharmacol. 70, 700–713 (2005)

    Article  Google Scholar 

  • C. B. Simone 2nd, J. S. Friedberg, E. Glatstein, J. P. Stevenson, D. H. Sterman, S. M. Hahn, K. A. Cengel, Photodynamic therapy for the treatment of non-small cell lung cancer. J Thorac Dis 4, 63–75 (2012)

    Google Scholar 

  • S. Singh, B. B. Aggarwal, Activation of transcription factor NF-kappa B is suppressed by curcumin (diferuloylmethane) [corrected]. J. Biol. Chem. 270, 24995–25000 (1995)

    Article  Google Scholar 

  • S. P. Singh, M. Sharma, P. K. Gupta, Enhancement of phototoxicity of curcumin in human oral cancer cells using silica nanoparticles as delivery vehicle. Lasers Med. Sci. 29, 645–652 (2014)

    Article  Google Scholar 

  • S. S. Stylli, A. H. Kaye, Photodynamic therapy of cerebral glioma - a review. Part II - clinical studies. J Clin Neurosci 13, 709–717 (2006)

    Article  Google Scholar 

  • S. S. Stylli, A. H. Kaye, L. MacGregor, M. Howes, P. Rajendra, Photodynamic therapy of high grade glioma - long term survival. J. Clin. Neurosci. 12, 389–398 (2005)

    Article  Google Scholar 

  • C. Syng-Ai, A. L. Kumari, A. Khar, Effect of curcumin on normal and tumor cells: role of glutathione and bcl-2. Mol. Cancer Ther. 3, 1101–1108 (2004)

    Google Scholar 

  • B. Todorovic-Markovic, S. Jovanovic, V. Jokanovic, Z. Nedić, M. Dramićanin, Z. Markovic, Atomic force microscopy study of fullerene-based colloids (article). Appl. Surf. Sci. 225, 3283–3288 (2008)

    Article  Google Scholar 

  • H. H. Tonnesen, J. Karlsen, G. B. van Henegouwen, Studies on curcumin and curcuminoids. VIII. Photochemical stability of curcumin. Z. Lebensm. Unters. Forsch. 183, 116–122 (1986)

    Article  Google Scholar 

  • H. van den Bergh, On the evolution of some endoscopic light delivery systems for photodynamic therapy. Endoscopy 30, 392–407 (1998)

    Article  Google Scholar 

  • D. Wang, J. Hu, L. Lv, X. Xia, J. Liu, X. Li, Enhanced inhibitory effect of curcumin via reactive oxygen species generation in human nasopharyngeal carcinoma cells following purple-light irradiation. Oncol Lett 6, 81–85 (2013)

    Google Scholar 

  • J. L. Watson, R. Hill, P. W. Lee, C. A. Giacomantonio, D. W. Hoskin, Curcumin induces apoptosis in HCT-116 human colon cancer cells in a p21-independent manner. Exp. Mol. Pathol. 84, 230–233 (2008)

    Article  Google Scholar 

  • M. M. Yallapu, S. F. Othman, E. T. Curtis, N. A. Bauer, N. Chauhan, D. Kumar, M. Jaggi, S. C. Chauhan, Curcumin-loaded magnetic nanoparticles for breast cancer therapeutics and imaging applications. Int. J. Nanomedicine 7, 1761–1779 (2012)

    Google Scholar 

  • D. Yan, M. E. Geusz, R. J. Jamasbi, Properties of lewis lung carcinoma cells surviving curcumin toxicity. J Cancer 3, 32–41 (2012)

    Article  Google Scholar 

  • T. Yu, J. Ji, Y. L. Guo, MST1 activation by curcumin mediates JNK activation, Foxo3a nuclear translocation and apoptosis in melanoma cells. Biochem. Biophys. Res. Commun. 441, 53–58 (2013)

    Article  Google Scholar 

  • H. Zhao, S. Kalivendi, H. Zhang, J. Joseph, K. Nithipatikom, J. Vasquez-Vivar, B. Kalyanaraman, Superoxide reacts with hydroethidine but forms a fluorescent product that is distinctly different from ethidium: potential implications in intracellular fluorescence detection of superoxide. Free Radic. Biol. Med. 34, 1359–1368 (2003)

    Article  Google Scholar 

  • M. Zheng, S. Ekmekcioglu, E. T. Walch, C. H. Tang, E. A. Grimm, Inhibition of nuclear factor-kappaB and nitric oxide by curcumin induces G2/M cell cycle arrest and apoptosis in human melanoma cells. Melanoma Res. 14, 165–171 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

The study was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (grants 41025 to VT, 172003 to BTM, and 173053 to LHT), by the SASPRO Program project 1237/02/02-b and the People Program (Marie Curie Actions) European Union’s Seventh Framework Program under REA grant agreement No. 609427 (grant to ZM). Research has been further co-funded by the Slovak Academy of Sciences (grant to ZS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ljubica Harhaji-Trajkovic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paunovic, V., Ristic, B., Markovic, Z. et al. c-Jun N-terminal kinase-dependent apoptotic photocytotoxicity of solvent exchange-prepared curcumin nanoparticles. Biomed Microdevices 18, 37 (2016). https://doi.org/10.1007/s10544-016-0062-2

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-016-0062-2

Keywords

Navigation