Skip to main content
Log in

Contributions of the Active and Passive Components of the Cytoskeletal Prestress to Stiffening of Airway Smooth Muscle Cells

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Airway smooth muscle cells exhibit stiffening during contractile activation. This stiffening may be interpreted as a result of the stabilizing influence of the mechanical prestress stored within the cytoskeleton (CSK). However, in vivo, airway smooth muscle cells contract while simultaneously experiencing breathing-induced stretching. Excessive stretching of cells could cause actin–myosin crosslinks, and possibly other cytoskeletal filaments, to break, thereby leading to dissipation of the prestress and inhibition of further cell stiffening. The aim of this study is to investigate the stiffening behavior of individual human airway smooth muscle (HASM) cells exposed to a combination of substrate stretching, contractile activation and relaxation. We treated cultured HASM cells with either contractile (histamine) or relaxing (DBcAMP) pharmacological agonists and used magnetic cytometry technique to investigate the stiffening behavior of these cells during uniform substrate stretching (0–30%). Cells that were not treated, as well as those treated with histamine, exhibited increasing stiffening during stretching up to 20% of substrate strain, with additional stiffening becoming inhibited for substrate strains of 20–30%. In contrast, in cells treated with DBcAMP, stretching produced moderate but continuous stiffening with increasing substrate strain. These results indicate that both active and passive components of the prestress contribute to cell stiffening. We also observed that cells permeabilized with saponin exhibited stiffening at low levels (<10%) of substrate stretching, similar to non-permeabilized cells, but not at high levels (10–30%) of stretching, where stiffening was inhibited. These data suggest that at low levels of substrate strains the relative contributions of ion channel activation as well as actin and focal adhesion remodeling are less important for stiffening than passive distension of the CSK. Taken together, our results suggest that both the active and passive components of the cytoskeletal prestress contribute to the stiffening behavior of HASM cells under physiological conditions, but that at high levels of cellular distensions there is a possible tradeoff between these two components with the contribution from the passive component becoming increasingly more important.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.

Similar content being viewed by others

References

  1. An S. S., Laudadio R. E., Lai J., Rogers R. A., Fredberg J. J. (2002) Stiffness changes in cultured airway smooth muscle cells. Am. J. Physiol. Cell Physiol. 283:C792–C801

    PubMed  CAS  Google Scholar 

  2. Bursac P., Lenormad G., Fabry B., Oliver M., Weitz D. A., Viasnoff V., Butler J. P., Fredberg J. J. (2005) Mechanism unifying cytoskeletal remodeling and slow dynamics in living cells. Nat. Mater. 4:567–561

    Article  CAS  Google Scholar 

  3. Chen C. S., Alonso J. L., Ostuni E., Whitesides G. M., Ingber D. E. (2003) Cell shape provides global control of focal adhesion assembly. Biochem. Biophys. Res. Commun. 307:355–361

    Article  PubMed  CAS  Google Scholar 

  4. Deng L., Fairbank N. J., Fabry B., Smith P. G., Maksym G.N. (2004) Localized mechanical stress induces time-dependent actin cytoskeletal remodelling and stiffening in cultured airway smooth muscle cells Am. J. Physiol. Cell Physiol. 287: C440–C448

    Article  PubMed  CAS  Google Scholar 

  5. Fabry B., Maksym G. N., Butler J. P., Glogauer M., Navajas D., Fredberg J. J. (2001) Scaling the microrheology of living cells. Phys. Rev. Lett. 87:148102

    Article  PubMed  CAS  Google Scholar 

  6. Fabry B., Maksym G. N., Butler J. P., Glogauer M., Navajas D., Taback N. A., Millet E. J., Fredberg J. J. (2003) Time scale and other invariants of integrative mechanical behavior in living cells. Phys. Rev. E 68:041914-1–041914-18

    Article  CAS  Google Scholar 

  7. Fabry B., Maksym G. N., Shore S. A., Moore Jr. P. E., Panettieri R. A., Butler J. P., Fredberg J. J. (2001) Signal transduction in smooth muscle selected contribution: Time course and heterogeneity of contractile responses in cultured human airway smooth muscle cells. J. Appl. Physiol. 91:986–994

    PubMed  CAS  Google Scholar 

  8. Féréol S., Fodil R., Labat B., Galiacy S., Laurent V. M., Louis B., Isabey D. (2006) Sensitivity of alveolar macrophage to substrate mechanical and adhesive properties Cell Motil. Cytoskeleton 63: 321–340

    Article  PubMed  Google Scholar 

  9. Fredberg J. J., Inouye D., Miller B., Nathan M., Jafari S., Raboudi S. H., Butler J. P., Shore S. A. (1997) Airway smooth muscle, tidal stretch, and dynamically determined contractile stress. Am. J. Respir. Crit. Care Med. 156:1752–1759

    PubMed  CAS  Google Scholar 

  10. Fredberg J. J., Jones K. A., Nathan M., Raboudi S., Prakash Y. S., Shore S. A., Butler J. P., Sieck G. C. (1996) Friction in airway smooth muscle: mechanism, latch, and implications in asthma. J. Appl. Physiol. 81:2703–2712

    PubMed  CAS  Google Scholar 

  11. Fredberg J. J., Stamenović D. (1989) On the imperfect elasticity of lung tissue. J. Appl. Physiol. 67:2408–2419

    PubMed  CAS  Google Scholar 

  12. Galbraith C. G., Yamada K. M., Sheetz M. P. (2002) The relationship between force and focal complex development. J. Cell Biol. 159:695–705

    Article  PubMed  CAS  Google Scholar 

  13. Hirshman C. A., Emala C. W. (1999) Actin organization in airway smooth muscle cells involves Gq and Gi-2 activation of Rho. Am. J. Physiol. Lung Cell Mol. Physiol. 277:L653–L661

    CAS  Google Scholar 

  14. Hirshman C. A., Zhu D., Panettieri R. A., Emala C. W. (2001) Actin depolymerization via β-adrenoceptor in airway smooth muscle cells: a novel PKA-independent pathway. Am. J. Physiol. Cell Physiol. 281:C1468–C1476

    PubMed  CAS  Google Scholar 

  15. Hubmayr R. D., Shore S. A., Fredberg J. J., Planus E., Panettieri Jr. R. A., Moller W., Heyder J., Wang N. (1996) Pharmacological activation changes stiffness of cultured human airway smooth muscle cells. Am. J. Physiol. Cell Physiol. 271:C1660–C1668

    CAS  Google Scholar 

  16. Ingber D. E. (2003) Cellular tensegrity revisited I. Cell structure and hierarchical systems biology. J. Cell. Sci. 116:1157–1173

    Article  PubMed  CAS  Google Scholar 

  17. Ito S., Majumdar A., Kume H., Shimokata K., Naruse K., Lutchen K. R., Stamenović D., Suki B. (2006) Viscoelastic and dynamic nonlinear properties of airway smooth muscle tissue: roles of mechanical force and the cytoskeleton. Am. J. Physiol. Lung Cell Mol. Physiol. 290:L1227–L1237

    Article  PubMed  CAS  Google Scholar 

  18. Laurent V. M., Fodil R., Cañadas P., Féréol S., Louis B., Planus E., Isabey D. (2003) Partitioning of cortical and deep cytoskeleton responses from transient magnetic bead twisting. Ann. Biomed. Eng. 31:1263–1278

    Article  PubMed  Google Scholar 

  19. Mehta D., Gunst S. J. (1999) Actin polymerization stimulated by contractile activation regulates force development in canine tracheal smooth muscle. J. Physiol. (Lond.) 519:829–840

    Article  CAS  Google Scholar 

  20. Mijailovich S. M., Kojic M., Zivkovic M., Fabry B., Fredberg J. J. (2002) A finite element model of cell deformation during magnetic bead twisting. J. Appl. Physiol. 93:1429–1436

    PubMed  Google Scholar 

  21. Panettieri R. A., Murray R. K., DePalo L. R., Yadvish R. A., Kotlikoff M. I. (1989) A human airway smooth muscle cell line that retains physiological responsiveness. Am. J. Physiol. Cell Physiol. 256:C329–C335

    CAS  Google Scholar 

  22. Pourati J., Maniotis A., Spiegel D., Schaffer J. L., Butler J. P, Fredberg J. J., Ingber D. E., Stamenović D., Wang N. (1998) Is cytoskeletal tension a major determinant of cell deformability in adherent endothelial cells? Am. J. Physiol. Cell Physiol. 274:C1283–C1289

    CAS  Google Scholar 

  23. Rosenblatt N., Hu S., Chen J., Wang N., Stamenović D. (2004) Distending stress of the cytoskeleton is a key determinant of cell rheological behavior. Biochem. Biophys. Res. Commun. 321:617–622

    Article  PubMed  CAS  Google Scholar 

  24. Sims J. R., Karp D., Ingber D. E. (1992) Altering the cellular mechanical force balance results in integrated changes in cell, cytoskeletal and nuclear shape. J. Cell Sci. 103:1215–1222

    PubMed  Google Scholar 

  25. Smith B. A., Tolloczko B., Martin J. G., Grütter P. (2005) Probing the viscoelastic behaviour of cultured airway smooth muscle cells with atomic force microscopy: stiffening induced by contractile agonist. Biophys. J. 88:2994–3007

    Article  PubMed  CAS  Google Scholar 

  26. Stamenović D. (2005) Effects of cytoskeletal prestress on cell rheological behavior. Acta Biomater. 1:255–262

    Article  PubMed  Google Scholar 

  27. Stamenović D., Wang N. (2000) Invited review: engineering approaches to cytoskeletal mechanics. J. Appl. Physiol. 89:2085–2090

    PubMed  Google Scholar 

  28. Tang D., Mehta D., Gunst S. J. (1999) Mechanosensitive tyrosine phosphorylation of paxillin and focal adhesion kinase in tracheal smooth muscle. Am. J. Physiol. Cell Physiol. 276:C250–C258

    CAS  Google Scholar 

  29. Trepat X., Grabulosa M., Puig F., Maksym G. N., Navajas D., Farré R. (2004) Viscoelasticity of human alveolar epithelial cells subjected to stretch. Am. J. Physiol. Lung Cell Mol. Physiol. 287:L1025–L1034

    Article  PubMed  CAS  Google Scholar 

  30. Wachssotck D. H., Schwartz W. H., Pollard T. D. (1994) Cross-linker dynamics determine the mechanical properties of actin gels. Biophys. J. 66:801–809

    Google Scholar 

  31. Wang N., Ingber D. E. (1994) Control of the cytoskeletal mechanics by extracellular matrix, cell shape, and mechanical tension. Biophys. J. 66:2181–2189

    Article  PubMed  CAS  Google Scholar 

  32. Wang N., Naruse K., Stamenović D., Fredberg J. J., Mijailovich S. M., Tolić-Nørrelykke I. M., Polte T., Mannix R., Ingber D. E. (2001) Mechanical behavior in living cells consistent with the tensegrity model. Proc. Natl. Acad. Sci. USA 98:7765–7770

    Article  PubMed  CAS  Google Scholar 

  33. Wang N., Tolić-Nørrelykke I. M., Chen J., Mijailovich S. M., Butler J. P., Fredberg J. J., Stamenović D. (2002) Cell prestress. Stiffness I., and prestress are closely associated in adherent contractile cells. Am. J. Physiol. Cell Physiol. 282:C606–C616

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by NIH Grants HL-33009 and GM-072744.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitrije Stamenović.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosenblatt, N., Hu, S., Suki, B. et al. Contributions of the Active and Passive Components of the Cytoskeletal Prestress to Stiffening of Airway Smooth Muscle Cells. Ann Biomed Eng 35, 224–234 (2007). https://doi.org/10.1007/s10439-006-9228-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-006-9228-z

Keywords

Navigation