Skip to main content

Advertisement

Log in

High resolution single-shot EPI at 7T

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Objective

Single-shot echo planar imaging (EPI) acquisitions at 7T are challenging due to increased distortions, signal dropouts, RF-power requirements, and reduced T2*. This study developed and tested pulse sequence and protocol modifications required to allow high resolution EPI for whole brain functional neuroimaging.

Materials and methods

Using geometric distortion correction methods, modified fat saturation, and parallel imaging, we acquired high resolution single-shot gradient-echo EPI data at 7T with different spatial resolution. The BOLD sensitivity was evaluated and quantified in a breath hold experiment.

Results

Single-shot EPI data with isotropic resolution from 3 to 1.1 mm were acquired in human subjects. The RF-power deposition has been reduced to allow up to 22 slices per second. In addition, acoustic noise and helium boil-off have been reduced. A reduction of the fat saturation flip angle resulted in up to 20% signal gain without compromising the fat suppression quality. For the coil used, the BOLD sensitivity is highest for 2 or 1.4 mm isotropic resolution.

Conclusion

High resolution single-shot EPI in the whole brain can be performed at 7T with high efficiency, low signal dropout, and without major geometric distortions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gati JS, Menon RS, Ugurbil K and Rutt BK (1997). Experimental determination of the BOLD field strength dependence in vessels and tissue. Magn Reson Med 38: 296–302

    Article  CAS  PubMed  Google Scholar 

  2. Yacoub E, Shmuel A, Pfeuffer J, Van De Moortele PF, Adriany G, Andersen P, Vaughan JT, Merkle H, Ugurbil K and Hu X (2001). Imaging brain function in humans at 7 Tesla. Magn Reson Med 45(4): 588–594

    Article  CAS  PubMed  Google Scholar 

  3. Kruger G and Glover GH (2001). Physiological noise in oxygenation-sensitive magnetic resonance imaging. Magn Reson Med 46(4): 631–637

    Article  CAS  PubMed  Google Scholar 

  4. Bodurka J, Ye F, Petridou N, Murphy K and Bandettini PA (2007). Mapping the MRI voxel volume in which thermal noise matches physiological noise–implications for fMRI. Neuroimage 34(2): 542–549

    Article  CAS  PubMed  Google Scholar 

  5. Yacoub E, Duong TQ, Van De Moortele PF, Lindquist M, Adriany G, Kim SG, Ugurbil K and Hu X (2003). Spin-echo fMRI in humans using high spatial resolutions and high magnetic fields. Magn Reson Med 49(4): 655–664

    Article  PubMed  Google Scholar 

  6. Silvennoinen MJ, Clingman CS, Golay X, Kauppinen RA and van Zijl PC (2003). Comparison of the dependence of blood R2 and R2* on oxygen saturation at 1.5 and 4.7 Tesla. Magn Reson Med 49(1): 47–60

    Article  CAS  PubMed  Google Scholar 

  7. Nair G and Duong TQ (2004). Echo-planar BOLD fMRI of mice on a narrow-bore 9.4 T magnet. Magn Reson Med 52(2): 430–434

    Article  PubMed  Google Scholar 

  8. Jezzard P and Balaban RS (1995). Correction for geometric distortion in echo planar images from B0 field variations. Magn Reson Med 34(1): 65–73

    Article  CAS  PubMed  Google Scholar 

  9. Reber PJ, Wong EC, Buxton RB and Frank LR (1998). Correction of off resonance-related distortion in echo-planar imaging using EPI-based field maps. Magn Reson Med 39(2): 328–330

    Article  CAS  PubMed  Google Scholar 

  10. Wan X, Gullberg GT, Parker DL and Zeng GL (1997). Reduction of geometric and intensity distortions in echo-planar imaging using a multireference scan. Magn Reson Med 37(6): 932–942

    Article  CAS  PubMed  Google Scholar 

  11. Zaitsev M, Hennig J and Speck O (2004). Point spread function mapping with parallel imaging techniques and high acceleration factors: fast, robust, and flexible method for echo-planar imaging distortion correction. Magn Reson Med 52(5): 1156–1166

    Article  CAS  PubMed  Google Scholar 

  12. Zeng H and Constable RT (2002). Image distortion correction in EPI: comparison of field mapping with point spread function mapping. Magn Reson Med 48(1): 137–146

    Article  PubMed  Google Scholar 

  13. Hunsche S, Sauner D, Treuer H, Hoevels M, Hesselmann V, Schulte O, Lackner K and Volker S (2004). Optimized distortion correction of epi-based statistical parametrical maps for stereotactic neurosurgery. Magn Reson Imaging 22(2): 163–170

    Article  PubMed  Google Scholar 

  14. Liu G and Ogawa S (2006). EPI image reconstruction with correction of distortion and signal losses. J Magn Reson Imaging 24(3): 683–689

    Article  PubMed  Google Scholar 

  15. Glover GH (1999). 3D Z-shim method for reduction of susceptibility effects in BOLD fMRI. Magn Reson Med 42(2): 290–299

    Article  CAS  PubMed  Google Scholar 

  16. Du YP, Dalwani M, Wylie K, Claus E and Tregellas JR (2007). Reducing susceptibility artifacts in fMRI using volume-selective Z-shim compensation. Magn Reson Med 57(2): 396–404

    Article  PubMed  Google Scholar 

  17. Constable RT and Spencer DD (1999). Composite image formation in z-shimmed functional MR imaging. Magn Reson Med 42(1): 110–117

    Article  CAS  PubMed  Google Scholar 

  18. Weiskopf N, Hutton C, Josephs O and Deichmann R (2006). Optimal EPI parameters for reduction of susceptibility-induced BOLD sensitivity losses: a whole-brain analysis at 3T and 1.5T. Neuroimage 33(2): 493–504

    Article  PubMed  Google Scholar 

  19. Merboldt KD, Finsterbusch J and Frahm J (2000). Reducing inhomogeneity artifacts in functional MRI of human brain activation-thin sections vs. gradient compensation. J Magn Reson 145(2): 184–191

    Article  CAS  PubMed  Google Scholar 

  20. de Zwart JA, van Gelderen P, Golay X, Ikonomidou VN and Duyn JH (2006). Accelerated parallel imaging for functional imaging of the human brain. NMR Biomed 19(3): 342–351

    Article  PubMed  Google Scholar 

  21. Weiger M, Pruessmann KP, Osterbauer R, Bornert P, Boesiger P and Jezzard P (2002). Sensitivity-encoded single-shot spiral imaging for reduced susceptibility artifacts in BOLD fMRI. Magn Reson Med 48(5): 860–866

    Article  PubMed  Google Scholar 

  22. de Zwart JA, van Gelderen P, Kellman P and Duyn JH (2002). Application of sensitivity-encoded echo-planar imaging for blood oxygen level-dependent functional brain imaging. Magn Reson Med 48(6): 1011–1020

    Article  PubMed  Google Scholar 

  23. Robson MD, Gore JC and Constable RT (1997). Measurement of the point spread function in MRI using constant time imaging. Magn Reson Med 38(5): 733–740

    Article  CAS  PubMed  Google Scholar 

  24. Deichmann R, Gottfried JA, Hutton C and Turner R (2003). Optimized EPI for fMRI studies of the orbitofrontal cortex. Neuroimage 19(2 Pt 1): 430–441

    Article  CAS  PubMed  Google Scholar 

  25. Windischberger C and Moser E (2000). Spatial resolution in echo planar imaging: shifting the acquisition window in k-space. Magn Reson Imaging 18(7): 825–834

    Article  CAS  PubMed  Google Scholar 

  26. Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J, Kiefer B and Haase A (2002). Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 47(6): 1202–1210

    Article  PubMed  Google Scholar 

  27. Thomason ME, Foland LC and Glover GH (2007). Calibration of BOLD fMRI using breath holding reduces group variance during a cognitive task. Hum Brain Mapp 28(1): 59–68

    Article  PubMed  Google Scholar 

  28. Bellgowan PS, Bandettini PA, van Gelderen P, Martin A and Bodurka J (2006). Improved BOLD detection in the medial temporal region using parallel imaging and voxel volume reduction. Neuroimage 29(4): 1244–1251

    Article  PubMed  Google Scholar 

  29. Katscher U, Bornert P, Leussler C and van den Brink JS (2003). Transmit SENSE. Magn Reson Med 49(1): 144–150

    Article  PubMed  Google Scholar 

  30. Mao W, Smith MB and Collins CM (2006). Exploring the limits of RF shimming for high-field MRI of the human head. Magn Reson Med 56(4): 918–922

    Article  PubMed  Google Scholar 

  31. Deichmann R, Josephs O, Hutton C, Corfield DR and Turner R (2002). Compensation of susceptibility-induced BOLD sensitivity losses in echo-planar fMRI imaging. Neuroimage 15(1): 120–135

    Article  CAS  PubMed  Google Scholar 

  32. Zhang R, Cox RW and Hyde JS (1997). The effect of magnetization transfer on functional MRI signals. Magn Reson Med 38(2): 187–192

    Article  CAS  PubMed  Google Scholar 

  33. More SR, Lim TC, Li M, Holland CK, Boyce SE and Lee JH (2006). Acoustic noise characteristics of a 4 Telsa MRI scanner. J Magn Reson Imaging 23(3): 388–397

    Article  PubMed  Google Scholar 

  34. Foster JR, Hall DA, Summerfield AQ, Palmer AR and Bowtell RW (2000). Sound-level measurements and calculations of safe noise dosage during EPI at 3 T. J Magn Reson Imaging 12(1): 157–163

    Article  CAS  PubMed  Google Scholar 

  35. Weisskoff RM (1996). Simple measurement of scanner stability for functional NMR imaging of activation in the brain. Magn Reson Med 36(4): 643–645

    Article  CAS  PubMed  Google Scholar 

  36. Wiggins GC, Triantafyllou C, Potthast A, Reykowski A, Nittka M and Wald LL (2006). 32-channel 3 Tesla receive-only phased-array head coil with soccer-ball element geometry. Magn Reson Med 56(1): 216–223

    Article  CAS  PubMed  Google Scholar 

  37. Thomason ME, Burrows BE, Gabrieli JD and Glover GH (2005). Breath holding reveals differences in fMRI BOLD signal in children and adults. Neuroimage 25(3): 824–837

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Speck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Speck, O., Stadler, J. & Zaitsev, M. High resolution single-shot EPI at 7T. Magn Reson Mater Phy 21, 73 (2008). https://doi.org/10.1007/s10334-007-0087-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10334-007-0087-x

Keywords

Navigation